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Abstract

This paper examines the responses of chicken producers to public disclosure of quality information
(or categorization) regarding Salmonella in chicken carcasses. Producers exert effort to attain better
categorization and shirk when failing to meet the thresholds required for better categorization. Public
disclosure reduces this shirking effect. However, some producers shirk even under public disclosure when
the threshold for disclosure is too stringent. The results suggest that the most effective quality disclosure
policies would either disclose continuous (non-categorical) information or impose fines or other sanctions
on producers attaining the poorest quality.
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1. Introduction

Moral hazard is common in consumer product settings whenever producers have more information about

the quality of their products than consumers do. Regulators have responded to this market failure through

various regulatory approaches including direct regulation of product quality (e.g., through FDA’s drug

approval process) and indirect solutions like information disclosure (e.g., FTC’s energy efficiency labeling

requirements). Information disclosure regulations might require the provision of either continuous or

discrete information about product quality. Discrete quality information (e.g., traffic-light labels) might

be more easily understood by consumers but may also discourage producers from attaining quality scores

far better than the thresholds associated with each labeled category (Shewmake and Viscusi, 2015; Ito and

Sallee, 2018; Barahona, Otero, and Otero, 2023). Furthermore, if producers see thresholds as unattainable,

they may make very little effort to improve along the relevant quality dimensions, i.e., they may shirk.

Thus, in designing an information disclosure requirement, regulators face a tradeoff between eliminating

the moral hazard stemming from the information asymmetry and providing actionable information to

consumers.

Public disclosure of food-safety outcomes may be an important policy solution to a global public-

health problem: food-borne diseases cause about 600 million cases of illness and 420,000 deaths per year

(World Health Organization, 2015). As the 2023 Netflix documentary “Poisoned” makes vividly clear,

there are many ways that government regulators and food producers in the United States could take

more action to ensure a safer food supply. Publicly disclosing information about producers’ food-safety

records could incentivize producers to improve their efforts related to food safety, but disclosure based

on discrete quality thresholds may also incentivize shirking. By exploring tradeoffs between improved

safety outcomes under disclosure, shirking in response to discrete thresholds, and stringency of disclosure

thresholds (with corresponding positive and negative incentives), this paper provides new perspectives

on how food safety, and more generally product quality, may be improved through public disclosure of

outcomes.

This paper explores a unique context in which producers faced a series of regulatory regimes targeting

product quality through mandatory disclosure of discrete quality ratings, a type of policy sometimes

referred to as “naming and shaming”. The context is a series of three regulatory changes undertaken by the

U.S. Department of Agriculture (USDA) regarding disclosure of information about Salmonella in chicken

carcasses at slaughter establishments. I use carcass-level data on Salmonella test results over 1999–20171

for all federally inspected chicken-slaughter establishments2 to test hypotheses about shaming and moral

hazard. The analysis documents the effects of categorization, publication of information about categories,

and a later tightening of categorization and disclosure criteria on outcomes of tests for Salmonella.

Salmonella is a genus of bacteria some types of which can cause illness in humans. Chicken is the most

widely consumed meat or poultry product in the United States (USDA ERS, 2023), and it is associated

1For ease of exposition, data from May 2015 through December 2017 are analyzed only in Appendix C.
2An establishment could also be referred to as a “facility”, “plant”, or “slaughterhouse”. In this paper, I use

the USDA term “establishment”.
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with more food-borne illnesses from Salmonella than any other food group (Interagency Food Safety

Analytics Collaboration, 2021). In the United States, Salmonella is the pathogen associated with the

most hospitalizations and deaths, and the second-most illnesses, of all pathogens that cause food-borne

illness (Hoffmann, Maculloch, and Batz, 2015). Salmonella in poultry has an economic cost of up to

$3.65 billion per year.3

The design of the USDA Salmonella Verification Testing Program generates incentives for establish-

ment operators to reduce effort around Salmonella control. Under this program, USDA Food Safety and

Inspection Service (FSIS) inspectors randomly pull chicken carcasses off the processing line to test them

for Salmonella. From May 2006 to May 2015, FSIS collected 51 carcass samples over 51 operating days

and designated establishments as either Category 1, 2, or 3 (in descending order by test performance)

depending on the number of positive samples within these “sample sets” of 51 carcasses. An important

feature of this categorization scheme is that discrete thresholds determined assignment into categories,

and there were no subcategories or continuous measures to differentiate establishments within categories.

For example, under the initial categorization scheme, establishments with 6 or fewer positive samples

(out of 51) were designated Category 1 and those with 7 to 12 were Category 2; those with 13 or more

were Category 3. Starting in March 2008, the names and addresses of establishments in Categories 2

and 3 (the worse-performing establishments) were disclosed on a public website; starting in July 2011,

categories were redefined so that Categories 1 and 2 were harder to attain, and only information about

establishments in Category 3 was disclosed.4

Compared with a regime with disclosure of continuous information about Salmonella test results, the

categorization and disclosure system creates clear moral hazard, specifically incentives to reduce effort

around controlling Salmonella. Under the discrete threshold disclosure system based on sample sets, we

would expect to see establishment operators reduce effort around Salmonella control in at least three

cases. The first case is when the establishment exceeds the public-disclosure threshold before the end

of a sample set. The second case is when the establishment has had very few positive samples, and it

would therefore be impossible to exceed the threshold no matter how many positive samples there were

among the remaining samples. Third, when categorization is not yet determined, establishments with

more leeway with respect to the thresholds are likely to have worse test performance.5

The paper provides evidence that establishments respond to incentives created by the categorization

and disclosure program, sometimes by shirking or attaining worse food-safety outcomes. My results are

summarized as follows.

3Hoffmann, Maculloch, and Batz (2015) report that Salmonella is the pathogen with the greatest economic cost of
associated food-borne illnesses, causing up to $9.49 billion (in 2013 dollars) in losses from illnesses, hospitalizations,
and deaths per year (at the upper end of the authors’ 90% credible interval). Painter et al. (2013) estimate that
10.1 to 29.2% of the cases of illness caused by Salmonella enterica are attributed to poultry; .292 × $9.49 billion
= $2.77 billion in 2013 dollars, or $3.65 billion in November 2023 dollars. Scharff (2020) provides a similar estimate.

4Additional policy changes took place in May 2015 and November 2016; see appendix C for discussion and
analysis of these changes.

5In this paper, leeway with respect to a threshold is the maximum share of positive samples among remaining
samples in the set that would allow the establishment to meet a threshold and attain the better of two possible
categorizations. The concept is formally defined in section 5.
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First, using a regression discontinuity (RD) approach with leeway as the running variable, I demon-

strate that when categorization was effectively determined, establishments’ performance on subsequent

Salmonella tests was significantly worse than that of establishments without categorization determined,

under most policy regimes. In particular, the RD results show that: (1) After establishments fail to meet

categorization thresholds but these failures do not subject them to public disclosure, Salmonella test

performance worsens for the remainder of the sample set, suggesting that establishment operators reduce

effort related to controlling Salmonella. (2) In the initial public-disclosure period, when establishments

failed to meet thresholds and were therefore subjected to public disclosure, there was no statistically

significant change in Salmonella test performance. In other words, the shirking effect appears to be

mitigated under public disclosure. (3) When the standard for disclosure was tightened in July 2011,

establishments that failed to avoid disclosure again had worse performance on subsequent tests for the

remainder of the sample set. (4) Prior to public disclosure, there was also some evidence of shirking after

sustained good performance guaranteed a certain categorization outcome. Note that I do not observe

inputs to production or safety protocols undertaken by establishments, so I am only able to analyze

how incentives affected Salmonella test outcomes; some of the empirical results suggest or imply that

establishments responded to incentives by reducing effort. There are several possible explanations for the

specific patterns of shirking behavior, which are consistent with features of the industry and the evolution

of Salmonella test performance over the period analyzed, as discussed in section 5.

Second, I document that when establishments have more leeway with respect to the thresholds, their

performance on Salmonella tests worsens. The relationship between distance from the thresholds and test

outcomes is strong whether or not there is a threat of public disclosure, but tends to be stronger when

the thresholds are associated with disclosure.

Third, I use a regression discontinuity in time (RDiT) approach to demonstrate the effects of each

policy change on average Salmonella test results. This analysis shows that the introduction of public

disclosure in March 2008 reduced the overall rate of positive Salmonella samples by about 55 percent. A

tightening of both categorization and disclosure standards in July 2011 had a bifurcating effect. Estab-

lishments that performed poorly prior to July 2011 tended to perform even worse after the tightening of

standards. The results suggest a fourth type of moral hazard or shirking outcome not related to current

performance with respect to the thresholds. It appears that some establishment operators exerted little

effort to achieve the tighter thresholds, given their history of test performance. On the other hand, mid-

dling establishments for which the thresholds might have been more easily achievable responded to the

incentives by improving performance. The net effect of the tightening of standards in July 2011 was to

increase overall Salmonella rates by about 140 percent.

This paper demonstrates that chicken producers responded to the incentives created by the inspection

program by reducing provision of food safety when the stakes were low. The results bear resemblance

to studies on responses to the introduction of quality ratings, such as Dranove et al. (2003), which

found that hospitals responded by focusing on healthier patients and ignoring the sickest; Jacob (2005),

which found that schools responded with gaming behavior such as finding ways to avoid reporting scores

of poorly performing students; and Jacob and Levitt (2003) and Dee et al. (2019), which found that
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teachers responded by cheating on standardized tests. (In contrast, Pope (2019) finds that the release of

teacher value-added ratings in Los Angeles resulted in improved test scores for the students of low-rated

teachers and presents suggestive evidence that teachers reallocated their efforts after the ratings were

released.)6 Similarly, Houde (2018) finds evidence that the energy efficiency of refrigerators is bunched

just below the threshold necessary to obtain Energy Star certification, Shewmake and Viscusi (2015)

find that home builders strategically incorporate “green” features to achieve green certifications, and

Barahona, Otero, and Otero (2023) find that food manufacturers reformulate products to avoid being

disclosed as unhealthy, with evidence of bunching in nutrient levels. Other related papers have studied

the effects of disclosure on outcomes in the context of restaurant health-inspection scores (Jin and Leslie,

2003, 2009; Bederson et al., 2018; Dai and Luca, 2020), drinking water (Bennear and Olmstead, 2008),

Clean Air Act violations (Evans, 2016), toxic emissions (Campa, 2018), farm antibiotic use (Belay and

Jensen, 2020), and workplace safety violations (Johnson, 2020).

There is also a parallel with taxation theory and empirical evidence suggesting that (repeated) taxable

income tends to fall just below thresholds at which the marginal tax rate changes discontinuously (Saez,

2010). According to the standard model (Saez, 2010), the distribution of (reported) income should be

smooth except when there are discontinuities in the marginal income tax rate. Discontinuities in the

tax schedule, in other words, create incentives for self-reported workers to either earn less or report less

than they would under a smooth tax schedule, which reduces tax revenues compared with a smooth

schedule. Bunching in the distribution of (reported) income is especially evident when the marginal tax

rate discontinuously increases from zero to some positive number, or from negative (i.e., a subsidy) to

zero (Saez, 2010), or when there are discontinuities in the average tax rate (Kleven and Waseem, 2013).

Although few studies explicitly assess social welfare implications of discontinuities in tax schedules, Sallee

and Slemrod (2012) show that the social losses caused by automakers’ bunching responses to the U.S.

Gas Guzzler Tax over 1991–2009 were four times greater than the social gains that would have resulted

from a smooth tax schedule.

The results on shirking bear some resemblance to the theory of effort under rank-order tournament

incentive schemes (Lazear and Rosen, 1981). Specifically, Lazear and Rosen (1981) show that when

workers (players) are heterogeneous in ability, some players underinvest in effort and others overinvest,

depending on their expectations about their abilities and therefore their expected outcomes relative to

other players in the tournament. More recent studies (e.g., Grant, 2016; Adams and Waddell, 2018; Lemus

and Marshall, 2021) have evaluated how information that changes expectations about final outcomes at

intermediate points in tournaments or competitions leads some competitors to change their levels or

risk-taking or effort. However, the application under study in this article is different from applications

of tournament theory because unlike broiler farms, chicken-slaughter establishments are not competing

6For a more thorough review of evidence on responses of hospitals and schools to quality disclosure, see Dranove
and Jin (2010).
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directly against a fixed pool of opponents.7 Moreover, this article provides evidence that effort changes in

response to meeting or failing to meet fixed thresholds, whereas the tournament theory literature presents

theory and evidence on how effort depends on competitors’ subjective expectations about winning or

meeting some target score.

Over the years, there has been a rich discussion about the best form of government intervention

to improve food safety, which can be characterized as a credence attribute (Caswell and Mojduszka,

1996) about which both producers and consumers have imperfect information (Antle, 2001)—although

producers nearly always have better information (Golan et al., 2004; Pouliot and Wang, 2018). Shapiro

(1983) shows that both mandating information provision about product quality and imposing minimum

quality standards can be welfare improving. Economists generally agree that regulation of performance

standards or quality outcomes is more efficient than regulating production processes (see, e.g., Antle 1996;

Josling, Roberts, and Orden, 2004, p. 23; Bovay, 2023). The analysis in this paper provides evidence

that mandatory disclosure of information related to performance standards changes producers’ behavior,

although the performance standards do not always improve safety.

USDA FSIS also inspects other types of meat and poultry products for Salmonella and other pathogens,

and has implemented similar categorization and disclosure programs for many of these products. Evidence

on disclosure, stringency, and shirking around results of tests for Salmonella in chicken should therefore

be seen as a meaningful example that may hold lessons for food-safety regulatory issues in other types of

meat and poultry because of the prevalence of Salmonella in chicken. The findings may inform ongoing

policy development, as FSIS continues to refine its inspection and disclosure programs.

Section 2 provides additional background information on the chicken-slaughter industry and federal

food-safety inspections. Section 3 describes the data and provides descriptive statistics. Section 4 presents

a model that provides hypotheses about effort to ensure food safety under categorization and disclosure.

Sections 5, 6, and 7 contain the empirical approaches and results. Section 5 demonstrates the effects

of known categorization on Salmonella test outcomes using an RD design with leeway as the running

variable. Section 6 explores the effects of distance from thresholds on Salmonella test outcomes when

categorization is unknown. Ollinger and Bovay (2020) find that, in the same context as this paper,

public disclosure in March 2008 improved Salmonella test results. Using an RDiT approach, section 7

confirms the earlier finding but also show that the July 2011 tightening of disclosure standards resulted in

worse average Salmonella test results, a result driven by the worst-performing establishments. Section 8

concludes. Appendices provide a description of the data-cleaning procedure additional validation and

7The majority of farmers raising broilers under production contracts are paid by integrators (which own slaughter
establishments) under a tournament incentive system (Knoeber, 1989; Knoeber and Thurman, 1994, 1995, see also
https://www.govinfo.gov/content/pkg/FR-2023-11-28/pdf/2023-24922.pdf). There are notable differences
between the setting of this paper and the upstream transactions that are based on rank-order tournaments. Buyers
of slaughtered broilers generally do not have exclusive contracts with integrators, different from the exclusive
relationships between integrators and growers. Instead, integrators sell to multiple buyers and compete with each
other in overlapping markets (that depend on geography and other factors). In addition, to the extent that
prices integrators receive for broilers may depend in part on Salmonella test results, the key criterion is whether
establishments have met the Category 1 threshold; performance relative to other establishments within the same
category is likely to matter less and is also unknown to producers.
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robustness tests, and describe results on shaming and shirking for two additional policy regimes that were

in place over 2015–2017.

2. Background on the chicken-slaughter industry, Salmonella, and food-safety in-

spections

Approximately nine billion meat chickens (“broilers”) are produced each year in the United States, typi-

cally grown on farms under contract with slaughter and processing companies (MacDonald, 2015; USDA,

2019). In 2017, there were more than 32,000 farms growing meat chickens in the United States (USDA,

2019), and 226 federally inspected chicken-slaughter establishments.8 Under the Poultry Products In-

spection Act, the USDA’s Food Safety and Inspection Service (FSIS) is responsible for inspecting poultry

and poultry products that enter interstate commerce. Buyers of chicken from chicken-slaughter estab-

lishments typically include grocery retail chains and restaurants, or distributors from whom retailers and

restaurants buy. Often, chicken-slaughter establishments will produce chicken that retail consumers see

as any of several different brands, including store brands.9

Salmonella is typically present in the intestines of birds and other animals. Because chickens are

coprophagic and are nearly always raised in crowded environments, live birds entering a slaughter estab-

lishment are likely to have pathogens from feces on their feathers, feet, and skin, which may spread to

the meat of the same bird or other birds during slaughter (USDA FSIS, 2021).10 Salmonella may even be

spread from birds slaughtered one day to carcasses slaughtered the next day if cleaning and disinfecting

procedures are insufficient (Zeng et al., 2021). In a poultry-slaughter establishment, the basic process

is that birds are killed, then cleaned, trimmed, and chilled. The share of samples testing positive for

Salmonella generally decreases as carcasses move through the processing line, from slaughter to chill tank

(Boubendir et al., 2021), which demonstrates that additional processing steps generally reduce risk by

improving hygiene rather than increasing risk because of cross-contamination. Rinsing and steaming the

carcasses, using disinfectants such as peracetic acid and chlorine, and chilling can all reduce the risk that

8During the period covered in this paper (1999 to 2017), there were 300 federally inspected chicken-slaughter
establishments, but 74 of these exited the industry or opted for state inspection during the period.

9For example, in 2014 the Foster Farms establishment located in Livingston, California produced chicken prod-
ucts for the FoodMaxx, Kroger, Safeway, Savemart, Sunland, and Valbest brands, in addition to the Foster Farms
brand. See https://www.fsis.usda.gov/sites/default/files/import/Foster-Farms-recalled-products.pdf.

10On-farm practices, including vaccination, feed supplements, hygiene, and replacement of bedding material, can
also reduce the risk that live chickens carry Salmonella to the slaughter establishment. See Harshavardhan Thip-
pareddi, Manpreet Singh, Todd Applegate, and Sudhir Yadav, “Spotlight: A Critical Look at Reducing the Risk
of Salmonella from Poultry—Part 2”, Food Safety Magazine, October 4, 2022, https://www.food-safety.com/
articles/8029-spotlight-a-critical-look-at-reducing-the-risk-of-salmonella-from-poultrypart-2

and Julie Larson Bricher, “Blockchain believer”, Meatingplace, November 2018, http://library.meatingplace.
com/publication/?m=21516&i=537911&p=82&ver=html5.
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carcasses contain Salmonella (Buncic and Sofos, 2012).11 Many risk-reducing processes can be applied

at different levels (e.g., length of time, concentration of disinfectants, temperature), all of which are as-

sociated with different costs. Some risk-reducing processes can be adjusted quickly, while others (such as

better defeathering equipment and chill tanks with higher efficiency) require capital investments.12

Under the Salmonella Verification Testing Program, from 1999 to 2015, FSIS inspectors assigned

ratings or categories to chicken-slaughter establishments based on the number of positive samples during

recent “sample sets” (in FSIS terminology) of 51 carcasses sampled on 51 consecutive operating days.

At first, this rating was essentially binary (establishments with 12 or fewer positive samples out of 51

met the standard) and ratings were not published. Minor sanctions were imposed in the event of three

consecutive sample sets with more than 12 positive samples. Starting in 2006, FSIS undertook several

policy changes related to testing of chicken carcasses for Salmonella and public disclosure of results. The

series of policy changes is summarized below and in figure 1.

Starting on May 30, 2006, establishments with 6 or fewer positive samples in a 51-sample set were

designated Category 1; those with 7 to 12 positive samples were designated Category 2; and establishments

that failed to meet the regulatory standard, with 13 or more positive samples, were designated Category 3.

The new category designations were conveyed to firms privately until March 28, 2008, when the names

and locations of Category 2 and 3 establishments were posted publicly on the FSIS website.13 An

establishment’s information remained on the website until the establishment attained Category 1 status.

On July 1, 2011, the standard was tightened so that establishments with 2 or fewer positive samples

out of 51 were designated Category 1; those with 3 to 5 positive samples were designated Category 2;

and those with 6 or more positive samples were designated Category 3. Starting on the same date, only

the names and locations of Category 3 establishments were published. Put differently, the threshold for

disclosure was reduced from 7 positive samples to 6, out of 51. Establishments would remain on the public

list until they attained Category 1 or 2 status. This standard remained in place through May 5, 2015.

As seen in figure 2, the aggregate share of samples positive declined sharply over the period during

which policy changes were being implemented, from 16.2% of samples positive in 2005 to 2.4% of sam-

ples positive in 2015, or a decline of nearly 1.4 percentage points per year. Along similar lines, table 1

11See also Harshavardhan Thippareddi and Manpreet Singh, “A Critical Look at Reducing the
Risk of Salmonella from Poultry, Part 3: Processing Controls”, Food Safety Magazine, December
6, 2022, https://www.food-safety.com/articles/8183-a-critical-look-at-reducing-the-risk-of-salmonella-from-poultry-
part-3-processing-controls. Rinsing chicken is not recommended in home or restaurant kitchens, because the main
effect is to spread bacteria to the sink and other surfaces (Henley et al., 2016).

12Ollinger and Bovay (2018) find evidence suggesting that ground-beef producers are selectively attentive to
Salmonella when producing beef to supply the National School Lunch Program, which imposes a zero-tolerance
standard for Salmonella in that product.

13The names of Category 2T establishments were also posted publicly starting March 28, 2008. Category 2T
establishments were those that had been designated Category 2 or 3 based on the second-most-recent sample set
but had improved to Category 1 performance in the most recent sample set. Effectively, the introduction of the
Category 2T designation meant that a Category 2 or 3 establishment’s name would be listed until it had completed
two consecutive sample sets with 6 or fewer positive samples. The introduction of the Category 2T designation
would not have changed the nature of incentives related to thresholds, but would have raised the stakes associated
with a single “Category 2” outcome.
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shows that the share of sample sets in Category 1 increased from about 60% before 2006 to 85% during

the initial public disclosure period (2008 to 2011), and remained at nearly the same level even after the

requirements for being included in Category 1 were made significantly more stringent in 2011. Corre-

spondingly, the shares of sample sets in Categories 2 and 3 fell over time. Since changes in technology and

buyer requirements for food safety were taking place concurrently with FSIS policy changes (Park et al.,

2014; Page, 2018), a careful empirical approach is needed to identify the effects of disclosure policies on

producer behavior with respect to Salmonella control.

The policy changes described above did not come as a surprise to regulated entities but were the

last stages of gradual public dialogue between FSIS and the slaughter industry. The policy changes

around testing chicken for Salmonella also were part of a broader effort by FSIS to improve food safety

in the meat and poultry industry through testing and disclosure. For example, producers may have

anticipated that disclosure of Salmonella test categories was inevitable, long before the Federal Register

announcement two months prior to the beginning of disclosure. Since it is likely that some producers

anticipated either tighter thresholds or disclosure of additional information before the policy changes, and

may have adjusted operations accordingly, the effects of policies and policy changes on outcomes may be

dampened, compared with a counterfactual in which policy changes came as complete surprises.

The safety of poultry processing remains relevant in policymaking today. In October 2021, FSIS for-

mally announced a program to investigate future regulatory actions with the goal of reducing Salmonella

in poultry by 25%.14 According to the proposed regulatory framework, chicken flocks will be tested for

Salmonella before entering slaughter establishments to help establishment operators take appropriate

risk-reducing actions within the establishment.15 FSIS will also modify process control requirements for

chicken-slaughter establishments and is considering declaring Salmonella an adulterant (when it is in high

levels, or of certain serotypes), which would allow FSIS to enforce a final product standard for Salmonella

in chicken. FSIS also announced in 2022 that it will begin measuring the number of Salmonella cells

present in poultry samples rather than just testing for the presence or absence of Salmonella.16

3. Data and descriptive statistics

Through a Freedom of Information Act (FOIA) request, I obtained data from FSIS on all test results

from the Salmonella Verification Testing Program for broilers from January 4, 1999 to January 25, 2018.

The data set also includes the address and name of establishments and snapshot information on the

FSIS district and circuit to which establishments belonged, FSIS size classifications (very small, small,

and large), and indicators for whether they processed other types of meat and active operation. All

of the data on establishment characteristics reflects characteristics at the time of the data pull. The

data set I obtained from FSIS does not include any indication of the groups of 51 samples (“sample

14See https://www.usda.gov/media/press-releases/2021/10/19/usda-launches-new-effort-reduce-salmonella-
illnesses-linked-poultry.

15See https://www.fsis.usda.gov/sites/default/files/media file/documents/FINAL-Salmonella-Framework-
10112022-508-edited.pdf.

16See https://www.fsis.usda.gov/news-events/news-press-releases/constituent-update-august-5-2022-0.
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sets”) used to determine regulatory compliance and category designations over 1999–2015.17 I am able to

assign observations into sample sets by identifying lengthy temporal gaps between observations. I drop

observations that are not likely to have been assigned correctly into sample sets based on this procedure,

as including these observations would generate noise.18 The complete data set (covering 1999 to 2018)

includes 172,571 non-duplicate observations for 300 establishments. For the period 1999 to 2015, there

are 2,448 sample sets. Table 1 summarizes the number of sample sets in each category and the average

share of samples positive in each policy period.

The basic data provide some evidence that establishment operators were attentive to the thresholds

and may have adjusted their operations to avoid exceeding the thresholds. Figure 3 shows histograms

of the number of positive samples per sample set for each of the four policy periods over 1999–2015.

Establishment operators were unable to precisely manipulate the number of positive samples per set

because the presence of Salmonella bacteria in chicken carcasses cannot be precisely controlled and because

carcasses were pulled out of processing lines at random to be sampled.19 Nevertheless, these histograms

provide some evidence that establishment operators adjusted their operations in response to the thresholds

and their positions relative to the thresholds. In particular, for most thresholds, there are many more

sample sets with one or two positive samples fewer than the threshold than with one or two positive

samples more than the threshold. Indeed, the thresholds tend to be associated with discontinuous drops

in the number of sample sets at each level, when binning observations this way. For example, during the

2006–08 period, about 23.4% of sample sets had 3 or 4 positive samples, and 20.6% had 5 or 6, while

only 8.5% had 7 or 8 and 7.0% had 9 or 10. The sharp drop in number of sample sets at the 6-positive-

sample threshold, and relatively flat distribution further from the threshold, suggests that establishment

operators exerted effort to stay at or below the threshold but relaxed efforts once above the threshold.

Similar results are evident at the 12-positive-sample regulatory threshold in the 1999–2006 period and the

Category 2/3 threshold in the 2006–08, 2008–11, and 2011–15 periods. Note, however, that during the

periods in which disclosure of Salmonella categorization was in effect, there is no evidence of bunching at

the maximum number of positive samples allowed for non-disclosure (i.e., 6 positive samples in 2008–11;

5 positive samples in 2011–15); establishment operators could not control Salmonella precisely enough to

yield such results.

4. A model of effort under categorization and disclosure

A simple model demonstrates how producers’ decisions to exert effort related to Salmonella control may be

a function of recent test results, categorization, and disclosure. Let the incremental profit of establishment

17For conciseness, throughout the rest of the paper, I generally refer only to the years in which policy regimes
started and ended, rather than the precise dates of policy change described in section 2.

18In essence, if the assignment into sample sets generates sets of many fewer or many more than 51 observations,
I drop the sets. Details on the sample-set assignment procedure are given in Appendix A.

19An FSIS policy in place since 1998 states that inspectors must select a random chill tank, a random time, and
a predetermined location for collecting the carcass samples, then identify a carcass at that location, then count five
carcasses back or ahead, and collect that sixth carcass for sampling. See https://www.fsis.usda.gov/sites/

default/files/media_file/2021-02/Salmonella_Analysis.pdf.
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k as a function of effort eik preceding the sampling of carcass i be given by

(1) πik = R (σik (eik, ε1ik) , catk (eik, ε2ik))− C (eik) ,

where R represents incremental revenue, σik is the share of carcass samples that will have tested positive

after sample i is collected, ε1ik and ε2ik are (correlated) stochastic error terms, catk is the category that

establishment k will be assigned at the end of the current sample set,20 and C represents the costs of

effort.

Suppressing subscripts, the expected incremental profit is then given by:

(2) E [π] = E [R (σ (e) , cat (e))]− C (e) .

Assume that incremental revenue is differentiable with respect to σ, σ is differentiable with respect to

effort, and costs are differentiable with respect to effort. Finally, assume that E [cat] is differentiable with

respect to effort; even though cat is discrete, its expected value may be continuous. This last assumption

is consistent with the notion of diminishing marginal returns to effort.

The derivative of expected incremental profit with respect to effort is:

(3)
∂E [π]

∂e
=

∂R

∂σ

∂σ

∂e
+

∂R

∂E [cat(e)]

∂E [cat(e)]

∂e
− ∂C

∂e
.

If revenue gains are associated with a smaller share (σ) of carcass samples testing positive for

Salmonella, and as long as σ decreases with effort e, then ∂R
∂σ

∂σ
∂e > 0. If revenue increases with bet-

ter categorization outcomes (i.e., Category 1 or 2), and as long as effort leads to an improvement in

expected categorization, then ∂R
∂E[cat(e)]

∂E[cat(e)]
∂e > 0. We should assume that costs are increasing in effort,

∂C
∂e > 0.

The key term in equation (3) is the second term, ∂R
∂E[cat(e)]

∂E[cat(e)]
∂e . If categorization is not in place,

then ∂R
∂E[cat(e)]

∂E[cat(e)]
∂e = 0, and establishments will choose effort to equate marginal incremental revenue

and marginal costs, so that

(4)
∂R

∂σ

∂σ

∂e
=

∂C

∂e
.

In other words, in the absence of categorization, effort related to Salmonella control is optimal if the

marginal benefits from reducing the share of samples positive equal the marginal cost.

Similarly, if there is no expectation that changes in the categorization outcome could result from

changes in effort, then ∂E[cat(e)]
∂e = 0, and establishments will choose effort as in equation (4). When

categorization is in place, ∂E[cat(e)]
∂e = 0 only if sufficiently good or poor performance over the set of carcass

samples 1, . . . , i − 1 guarantees a known categorization outcome. Thus, in this model, effort related to

Salmonella control is greater after the introduction of categorization than before, if there are some benefits

20catk is not determined until (near) the end of the sample set but effort throughout may affect the categorization
outcome.
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from better categorization outcomes, and if categorization outcomes are not guaranteed already on the

basis of good or poor performance. Because ∂R
∂E[cat(e)]

∂E[cat(e)]
∂e > 0, guaranteed categorization outcomes

reduce effort.

If categorization outcomes are not known, then optimal effort depends on ∂E[cat(e)]
∂e , i.e., how effort

affects the likelihood that a worse categorization outcome will result. This depends on the relationship

between effort and Salmonella test outcomes, of course, but it also depends on the number of samples

remaining within the sample set and the number of samples that have tested positive so far within

the sample set. For example, consider the policy in place from 2011 to 2015. If an establishment had

more than 5 positive samples over a 51-sample set, the name of the establishment would be disclosed.

If establishment a had zero positive samples among the first 45, additional (or reduced) effort would

have been unlikely to affect ultimate categorization. In contrast, if establishment b had five positive

samples among the first 45, additional or reduced effort could have had a strong effect on the expected

categorization outcome. In this example, ∂E[cat(eb)]
∂eb

< ∂E[cat(ea)]
∂ea

< 0, and the returns to effort would be

greater for establishment b, assuming that each establishment’s effort has the same effect on the probability

of a positive sample. Recalling the concept of leeway—the share of remaining samples within the sample

set that may test positive if the establishment is to achieve a given categorization—establishment a has

more leeway than establishment b.

Figure 4 illustrates the implications of the model for the relationship between expected Salmonella

control efforts and leeway. When leeway < 0 or leeway ≥ 1, categorization outcomes are known, and

effort is chosen such that ∂R
∂σ

∂σ
∂e = ∂C

∂e . When categorization outcomes are not known, effort is chosen

such that ∂R
∂σ

∂σ
∂e + ∂R

∂E[cat(e)]
∂E[cat(e)]

∂e = ∂C
∂e ; all three terms are positive, so effort is expected to be larger

than when categorization is known. When leeway is smaller within the [0, 1) interval, establishments are

expected to exert more effort to control Salmonella because the returns to doing so are greater.

The simple model outlined in this section generates hypotheses about how the Salmonella testing,

categorization, and disclosure program may affect effort, but effort cannot be directly observed. Instead,

the empirical work outlined in the following sections demonstrates the effects of known categorization, dis-

tance from regulatory thresholds, and policy changes on test outcomes, which are related to unobservable

effort.

5. Effects of known categorization on Salmonella test outcomes

In this section, I use a regression discontinuity (RD) model to demonstrate how Salmonella test results

changed when establishments crossed thresholds within a sample set, thus ensuring a particular cate-

gorization. Based on the model outlined in the previous section, establishment operators relax efforts

around Salmonella control after either (1) too many positive samples result in crossing a threshold into a

worse category (Category 2 or 3) or (2) sufficiently many negative samples ensure a better categorization

outcome (Category 1 or 2). Either of these outcomes causes ∂R
∂E[cat(e)]

∂E[cat(e)]
∂e = 0, within equation (3).

Effects of crossing thresholds are analyzed separately for each policy regime because under each policy

regime, establishment operators faced somewhat different incentives related to controlling Salmonella. In
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particular, the information that would be disclosed upon exceeding the 5-, 6-, and 12-positive-sample

thresholds varied under the various policy regimes.

5.1. Empirical approach

A natural and intuitive approach to studying the effects of crossing the discrete 5-, 6-, and 12-positive-

sample thresholds on Salmonella test performance would be to use the number of positive samples within

the sample set as a running variable in an RD design. However, such an approach only works when the

cutoffs are crossed from below (i.e., when an establishment has an additional positive sample). Consider

the following example. If 5 positive samples is the relevant threshold (as it was in 2011–15), and an

establishment has had zero positive samples through 45 tests within a sample set, another negative sample

would guarantee that the establishment will have no more than 5 positive samples out of the 51 samples

in the set. In this case, the incentives for good Salmonella control as they relate to categorization and

public disclosure could not be captured by using the number of positive samples as the running variable.

In addition, an RD design with the number of positive samples as the running variable would not reflect

the differential effects on effort of positive samples near the beginning of a sample set relative to positive

samples near the end. For example, incentives differ when an establishment has 5 positive samples among

the first 10, and when it has 5 positive samples among the first 50.

Given these considerations, the running variable used in the RD approach described in this section is

the share of the remaining samples (within the sample set) that may be positive if the establishment is

to achieve a given categorization (either Category 1 or 2). I term this variable leewayκ, or leeway with

respect to category threshold κ, and formally define it as

(5) leewayκijk =
κ−

∑i−1
l=1 Yljk

52− i
,

where κ ∈ {2, 5, 6, 12} is the maximum number of samples permitted to be positive within a sample

set, to achieve the given category; i is the sample number within sample set j at establishment k; and∑i−1
l=1 Yljk is a count of the number of positive observations within sample set j at establishment k, within

the interval [1, i− 1]. The denominator 52 − i is a count of the total number of samples that still need

to be collected to complete the sample set, including i. I exclude any observations with i > 51, as these

extra samples would not have affected categorization.21

I use the following regression equation for the RD model to investigate the effects of crossing category

thresholds on Salmonella test results:

(6) Yijk = α+ β0D0ijk + β1D1ijk + f (leewayκijk) + εijk,

where Yijk is a binary variable representing the results of test i for Salmonella within sample set j at es-

tablishment k (Yijk = 1 when test i is positive), D0ijk = 1 {leewayκijk < 0}, D1ijk = 1 {leewayκijk ≥ 1},

21As discussed in Appendix A, FSIS inspectors sometimes collected more than 51 samples but the extra samples
were not used for categorization.
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f (·) is a polynomial function that can take on different values on either side of each cutoff (c ∈ {0, 1}); and
εijk is the residual. Following Calonico, Cattaneo, and Titiunik (2014b), Cattaneo, Idrobo, and Titiunik

(2020b), and Cattaneo, Titiunik, and Vazquez-Bare (2020), I use sharp RD analysis with local linear

regressions, triangular kernel weighting, bandwidths chosen to minimize mean squared errors on either

side of both cutoffs, and robust nonparametric confidence intervals. Note that within all sample sets, the

value of leewayκ starts at 0 < κ/51 < 1 and that as more samples are taken, leewayκ may decrease or

increase and eventually cross the 0 or 1 thresholds, causing either D0 = 1 or D1 = 1. If D0 = 1, then the

better categorization outcome cannot be attained; if D1 = 1, then the better categorization outcome is

certain to be attained. Thus, positive values of either RD coefficient β0 or β1 imply that establishments

shirk when crossing thresholds, consistent with the expectations outlined in section 4.

5.2. Results: Effects of known categorization on Salmonella test outcomes

The estimates from the RD models strongly suggest that establishment operators relaxed efforts around

Salmonella control when categorization outcomes were known to establishments but when the catego-

rization would not result in disclosure. There was not evidence of shirking during the initial period

when categorization outcomes were publicly disclosed, but there was strong evidence of shirking when

establishments failed to meet the more stringent disclosure threshold in place beginning in 2011.

RD plots for each regulatory threshold and each period are shown in figures 5 and 6. From these

plots, it appears that the leewayκ = 0 threshold affected producers’ behavior in most periods. Panel A

of table 2 shows estimates of the RD coefficients at the leewayκ = 0 and leewayκ = 1 cutoffs for the

thresholds κ associated with regulation or categorization but not with disclosure, and panel B shows

estimates of the same RD coefficients for the thresholds κ associated with disclosure. Interpretations of

specific results in table 2 follow. Note that shirking is suggested by discontinuous increases in the share of

samples positive as the value of leewayκ crosses 0 from above or crosses 1 from below, in figures 5 and 6,

and that these increases correspond with positive coefficients in the top line of each column in table 2.

During the initial 1999–2006 period, when the category system had not yet been introduced and FSIS

did not impose sanctions until establishments failed to meet the 12/51 threshold on three consecutive sam-

ple sets, establishments were 3.4 percentage points more likely to have positive Salmonella test outcomes

after failing to meet the 12/51 threshold (see table 2, panel A, column 1).

During the 2006–08 period, when categorization was known only to the establishment (no disclosure),

establishments had worse results after crossing the thresholds that ensured Category 2 and 3 outcomes. In

particular, establishments were 8.4 percentage points more likely to have positive Salmonella test outcomes

after failing to meet the 6/51 threshold necessary to be denoted Category 1, and 14.9 percentage points

more likely to have positive samples after failing to meet the Category 2 standard (see table 2, panel A,

columns 3 and 5). The sharp effects of crossing these thresholds suggests that operators exerted effort

to stay below the thresholds and then substantially reduced effort once the thresholds were exceeded.

In addition, during the 2006–08 period, establishments were 10.2 percentage points more likely to have

positive test outcomes after good performance ensured they would avoid a Category 3 outcome (table 2,

13



panel A, column 6). Thus, the results suggest that establishment operators shirked after either sustained

poor performance or sustained poor performance ensured that categorization outcomes were known.

During the 2008–11 policy period, the names of both Category 2 and 3 establishments were posted

on the FSIS website. The results in table 2, panel B, columns 1–4, show that crossing thresholds such

that categorization outcomes were known had statistically insignificant effects on subsequent Salmonella

test performance. Disclosure thus may have reduced establishment operators’ incentives to shirk.

During the 2011–15 policy period, the thresholds associated with Category 2 and 3 were tightened so

that Category 1 consisted of establishments with 2 or fewer positive samples out of 51 and Category 3

consisted of establishments with 6 or more. Under these new, more stringent thresholds, only the names

of Category 3 establishments were publicly disclosed. During 2011–15, establishments were 7.8 percentage

points more likely to have positive samples after failing to attain Category 1 status (table 2, panel A,

column 7). They were also 15.8 percentage points more likely to have positive samples after failing

to attain Category 2 status and ensuring disclosure (table 2, panel B, column 5). So, similar to the

2006–08 period, establishment operators apparently exerted effort to attain Category 1 but relaxed after

failing to attain that standard, despite categorization status not being published for Category 1 and 2

establishments.

I now summarize the results in table 2. First, when establishments fail to meet thresholds but are

not subject to public disclosure, Salmonella test performance typically worsens (panel A, columns 1, 3, 5,

and 7). Second, during the initial public disclosure period, when establishments failed to meet thresh-

olds that subjected them to public disclosure, there was no statistically significant change in Salmonella

test performance (panel B, columns 1 and 3). Third, establishment operators relaxed efforts after sus-

tained good performance on Salmonella tests ensured they would avoid a Category 3 outcome in the

pre-disclosure period (panel A, column 6), but there was no evidence of shirking after sustained good

performance in the disclosure period (panel B, columns 2, 4, and 6). Fourth, during the period with a

more stringent threshold for avoiding public disclosure, test performance worsened after sustained poor

performance ensured that the categorization outcome would be publicly disclosed (panel B, column 5).

These results suggest strongly that before public disclosure was implemented, establishment operators

paid attention to the thresholds and exerted effort to achieve better categorization, and then shirked

after failing to achieve the targeted thresholds. This shirking behavior existed even though FSIS did

not provide information about categorization and therefore the thresholds should have mattered little

to producers and should have been unknown to buyers. In contrast, during the initial public disclosure

period, there was no statistically significant evidence of shirking. These findings appear to be puzzling,

but are consistent with three possible explanations.

First, buyers sometimes demand additional information about Salmonella test results, beyond what

is publicly disclosed. A representative of a large-scale vertically integrated poultry producer that owns

slaughter establishments indicated that in the period prior to public disclosure of category information,

some buyers requested that producers disclose their categorization status (personal communication, Oc-

tober 2023). In addition, some buyers have required that chicken come from Category 1 establishments

and that supplying establishments that fall out of Category 1 must review their food-safety practices

14



monthly and take corrective action until returning to Category 1 (pers. comm., Oct. 2023). In the event

that establishments move from Category 1 to Category 2 or 3, some buyers will also demand additional

information about food safety, including the results of private (non-FSIS) tests for Salmonella in car-

casses (pers. comm., Oct. 2023). If, prior to public disclosure, some buyers only requested categorical

information but did not request information about the results of private tests or details about the num-

ber of positive samples within Category 2 or 3, then their suppliers would have had incentives to shirk

once failing to meet the Category 1 standard. As more buyers began to request additional information,

these incentives to shirk would have been lessened. In addition, it is possible that even in the absence of

additional oversight from buyers, owners of establishments may have enforced stricter controls when the

better categories were not achieved.22

A second possibility is that producer behavior was influenced by expectations about future changes

to the testing and disclosure policies. For example, if producers anticipated that carcass-level test results

would eventually be made available by FSIS, this would have dampened incentives to shirk.

A third possible reason that shirking was evident in the period prior to public disclosure (2006–08)

but not during the initial public disclosure period (2008–11) is that improvements in performance on

food safety tests meant that more establishments were in Category 1, and fewer in Categories 2 and 3,

during the later period. To be specific, as seen in table 1, 75% of all sample sets placed establishments

into Category 1 over 2006–08 but 85% of sample sets placed establishments into Category 1 over 2008–

11. As Category 2 and 3 outcomes became less likely, the establishments in those categories may have

been mainly selling to buyers that did not demand or expect Category 1 outcomes. If the customers of

such lower-quality producers did not care about categorization outcomes, then crossing the threshold into

Category 2 or 3 would not have changed incentives for producers. Thus, shirking would not have been as

apparent.

Whatever the reason, public disclosure seems to have reduced the incentives to shirk until stan-

dards were tightened in 2011, after which shirking behavior was again evident for establishments crossing

thresholds that ensured both Category 2 and 3 outcomes.

5.3. Validity of the RD design and robustness tests

In most contemporary studies that use RD approaches (see Lee and Lemieux, 2010; Calonico, Cattaneo,

and Titiunik, 2014b; Cattaneo, Idrobo, and Titiunik, 2020b), two empirical tests are used to allay concerns

that the running variable may be manipulated by agents (in this case, establishment managers or FSIS

inspectors). One test shows that the running variable is smooth around the cutoff(s), that is, as-good-as-

randomly distributed on either side of the cutoff(s) within a narrow band. This is typically tested using a

density test as described by McCrary (2008); a recent update is proposed by Cattaneo, Jansson, and Ma

22For some anecdotes about how producers and buyers have implemented their own tests for Salmonella, espe-
cially in the wake of major safety problems, see Lawrence Aylward, “Data driven”, Meat + Poultry, December 10,
2015, https://www.meatpoultry.com/articles/19172-data-driven and Julie Larson Bricher, “Blockchain be-
liever”, Meatingplace, November 2018, http://library.meatingplace.com/publication/?m=21516&i=537911&
p=82&ver=html5.
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(2018). The second test shows that baseline covariates are also randomly distributed around the cutoff

value(s) of the running variable by running an RD model on the baseline covariates. Neither of these

tests are appropriate in my setting because of unique features of the data, described below.

Given that the running variable used in the regressions in this section is a ratio with some values

(especially 0 and 1) much more common than others, density tests may yield spurious rejections of the

null hypothesis (i.e., smoothness). To demonstrate this, I simulate 10,000 values of the leewayκ variables

for each test i ∈ {1, . . . , 51} according to a Bernoulli distribution with the probability of a positive

sample equal to the mean share of samples positive in each of the four policy periods. The rddensity

test proposed by Cattaneo, Jansson, and Ma (2018) suggests that the running variable has discontinuous

density at the cutoffs (p < 0.001) in nearly all cases using both the simulated and real data.23 For another

comparison of smoothness in the running variable, I use t-tests to compare the ratios of the number of

observations with leewayκ = 0 and leewayκ = 1, over the number of observations with leewayκ < 0 and

leewayκ ∈ (0, 1), across my real and simulated data. I find that the real data are significantly smoother

than the simulated data at leewayκ = 0 (p = 0.002) and almost exactly as smooth at leewayκ = 1. Given

that the running variable is inherently lumpy even in the simulated data, I conclude that the distribution

of the running variable is as good as random around the cutoffs.

The second common way to test for manipulation of the running variable is to run an RD model on

baseline covariates. A finding that the baseline covariates are discontinuous at the cutoffs may imply

that agents are able to manipulate their status with respect to the cutoffs and that manipulation ability

is somehow correlated with baseline characteristics of establishments. Because the running variable used

in the regressions in this section is a ratio that takes on certain values much more frequently than

other values, RD estimates of the effects of the actual cutoffs and many placebo cutoffs on the baseline

covariates are statistically significant across many policy periods.24 I suggest that the unusual nature

of the running variable makes a manipulation test based on baseline covariates inappropriate. Instead,

I rely on a practical approach suggested by Eggers et al. (2015) and de la Cuesta and Imai (2016) to

argue that manipulation is unlikely. Since agents cannot determine the values of their running variables

with “extreme precision” (de la Cuesta and Imai, 2016), it is unlikely that manipulation is done on the

basis of predetermined covariates.25 Furthermore, visual examination of the histograms of the number of

positive samples per completed sample set in figure 3 suggests that manipulation through post-test fraud

is also unlikely. When disclosure was in place (starting in 2008), the density of cumulative positive tests

per sample set was clustered well below the disclosure thresholds, with no discontinuity just below the

thresholds. The increased density of cumulative positive tests further below the thresholds suggest that

23For some of the cutoff and policy-period combinations, the rddensity test does not produce estimates using
the simulated data because there are not enough observations on one side of one threshold.

24The baseline covariates tested included sample collection date, the share of samples positive in the prior sample
set, and sample number (i = 1, . . . , 51) within sample set.

25Recall that the denominator of the running variable is sample number within the sample set, which cannot be
controlled by the establishment managers or inspectors. Furthermore, establishments had relatively poor ability to
precisely control their share of positive tests and stay below the disclosure thresholds. Hence, neither the numerator
nor the denominator of the running variable can be (precisely) controlled.
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establishment managers exerted (legitimate) effort to stay below the thresholds, and not that fraudulent

behavior helped them stay below the thresholds.26

Appendix table B1 presents results for regressions parallel to those in table 2 but using placebo

cutoff values for the running variables (leewayκ). The time periods and thresholds shown in table B1

represent the statistically significant estimates from table 2. The placebo cutoff values are three multiples

of 0.05 in either direction from c = 0 or c = 1. In appendix table B1, several of the RD coefficients are

statistically significant with p < 0.1, but only three of the 36 coefficients are statistically significant and

have the positive sign that suggests shirking. Given the large number of placebo thresholds tested, we

can conclude that the placebos do not yield meaningful effect estimates.

In summary, the validity of my RD approach depends on institutional features that ensure the running

variable is not manipulable, and regressions using placebo cutoffs do not raise concerns about the main

findings.

6. Distance from regulatory thresholds and Salmonella test outcomes

In this section, I evaluate the relationship between distance from thresholds and Salmonella test perfor-

mance, when multiple category outcomes are still possible. The analysis demonstrates that Salmonella

test outcomes were significantly worse in every policy period when establishments had more leeway with

respect to the category thresholds.

6.1. Empirical approach

As in the previous section, the dependent variable is the binary Salmonella test result. The key ex-

planatory variable in these regressions is again leewayκ. Larger values of leewayκ indicate that a larger

share of remaining samples could test positive for Salmonella. In terms of equation (3) from the model in

section 4, when leewayκ is smaller,
∣∣∣∂E[cat(e)]

∂e

∣∣∣ is greater, and the returns to effort are greater. Therefore—

assuming that Salmonella category assignment matters to establishment operators—Salmonella control

efforts should increase when the value of leewayκ is smaller. To estimate the relationship between

leewayκ and test outcomes when multiple category outcomes are possible, I use only observations with

leewayκ ∈ [0, 1).

I estimate the relationship between leewayκ and Salmonella test outcomes under each policy regime

using a series of linear probability models, according to equation 7:

(7) Yijk = α+ βleewayκijk + γ1i+ γ2sijk + ujk + εijk,

26Makofske (2023) documents that in Las Vegas, food-service health inspectors underreported minor violations
when those violations were likely to affect letter-grade outcomes. However, such manipulation by inspectors is
unlikely to be feasible in the context of the FSIS Salmonella Verification Testing Program. In a private and candid
conversation, an FSIS employee told me they did not believe establishment managers or FSIS inspectors would
have been able to fraudulently manipulate test results or select individual “clean” carcasses for inspection. See also
footnote 19.

17



where Yijk is a binary variable representing the results of test i for Salmonella within sample set j at

establishment k (positive = 1); sijk is the share of samples positive within the current sample set (over tests

1, . . . , i−1); ujk represents establishment–sample-set fixed effects; and εijk is the residual. Establishment–

sample-set fixed effects control for factors that may affect test outcomes at an establishment over a narrow

temporal window, such as fixed technology or biological factors common to the chickens supplied.

Admittedly, there are some shortcomings in the identification strategy described here, given that

leewayκijk is (mechanically and empirically) negatively correlated with the share of samples positive

sijk and positively correlated with the sample number i. However, it is essential to control for recent

test results at each establishment, given that average test results vary widely across establishments.

Establishment operators cannot (precisely) control any of these three regressors, so leewayκ is plausibly

exogenous. Including sijk and i as regressors allows me to tease out effects of distance from the threshold

on Salmonella control efforts. Moreover, my empirical results are consistent whether or not sijk is included

as a regressor.

6.2. Results: Distance from thresholds and Salmonella test outcomes

Table 3 presents results from regressions of the form described by equation 7, which demonstrate the effect

of distance from the thresholds on Salmonella test outcomes. Table 3 demonstrates that in all periods,

when the value of leewayκ was larger—that is, when establishments were further from thresholds—,

carcasses were more likely to test positive for Salmonella.27 In other words, establishments controlled

Salmonella better when it was critical to do so to ensure a better categorization outcome. These results

hold regardless of whether the policy of public disclosure of Category 2 and 3 outcomes was in place. I

now review the results in more detail.

Panels A and B of table 3 report results for the regressions with the leeway variables defined with

respect to the Category 1/2 and 2/3 thresholds, respectively.28 From 1999 to 2006, when categorization

had not yet been introduced but 12 positive samples out of 51 was a regulatory requirement, Salmonella

test outcomes were worse when establishments had more leeway with respect to both the 6- and 12-

positive-sample thresholds. When the leeway12 value was 10 percentage points higher, the probability

of a positive test result was 1.97 percentage points higher (p < 0.001; panel B, column 2). The elasticity

of the share of samples positive with respect to leeway12 was 0.57, calculated using the mean share of

samples positive and the mean value of leeway12.

From 2006 to 2008, when categorization was reported privately, the relationship between distance from

the 12-positives threshold and Salmonella test outcomes was slightly stronger than in the previous period.

When the leeway6 value was 10 percentage points higher, the probability of a positive test result was

1.30 percentage points higher (p < 0.001; elasticity = 0.28; panel A, column 4), and when the leeway12

value by 10 percentage points higher, the probability of a positive test result was 2.24 percentage points

27It is important to note that the results in this section are conditional on using establishment–sample-set fixed
effects. Without using any fixed effects, the correlation between leewayκ and subsequent positive samples was
negative or insignificant in all periods before 2011, as suggested by figures 5 and 6.

28All discussion of results in table 3 references the even-numbered columns, as they are the preferred specifications.
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higher (p < 0.001; elasticity = 0.90; panel B, column 4).

Public disclosure of the names of both Category 2 and 3 establishments from 2008–11 further strength-

ened the relationship between distance from the thresholds and test results. During this period, when the

leeway6 value was 10 percentage points higher, the probability of a positive test result was 1.56 percent-

age points higher (p < 0.001; elasticity = 0.60; panel A, column 6), and when the leeway12 value was

10 percentage points higher, the probability of a positive test result was 2.79 percentage points higher

(p < 0.001; elasticity = 1.70; panel B, column 6).

Over 2011–15, the standards were tightened and only the names of Category 3 establishments were

posted. Correspondingly, the relationship between the leeway value associated with the Category 1/2

threshold and test outcomes was weaker over 2011–15. When the leeway2 value was 10 percentage points

higher, the probability of a positive test result was 0.35 percentage points higher (p = 0.004; elasticity

= 0.17; panel A, column 8). The relationship between the leeway value associated with the Category 2/3

threshold and test outcomes was also highly significant but much weaker than in the 2006–08 and 2008–11

periods: when the leeway5 value was 10 percentage points higher, the probability of a positive test result

was 0.78 percentage points higher (p < 0.001; elasticity = 0.71; panel B, column 8).

What should we take away from all of these results? To put it most simply, incentives matter.

Salmonella test results were better when they needed to be. Distance from thresholds mattered whether

or not there was a threat of public disclosure. Distance from the more lenient threshold also mattered

much more than distance from the stringent threshold. Across all periods, the elasticity of the share of

samples positive with respect to leeway was 2.8 to 4.2 times larger when considering the Category 2/3

threshold than the Category 1/2 threshold. The effect size increased when categorization and public

disclosure were introduced, but the tightening of standards in 2011 reduced the effect. In short, the

introduction of both categorization and public disclosure seems to have changed the extent to which

establishment operators paid attention to the thresholds, and increased their efforts accordingly.

7. Effects of policy changes on Salmonella test outcomes

Regulators face tradeoffs when designing requirements that producers disclose information about product

quality. Public disclosure may mitigate moral hazard, as seen in section 5. But if the thresholds associated

with categorization and disclosure are so stringent that many producers cannot meet the thresholds at low

cost, these producers may significantly reduce effort irrespective of their distance from the thresholds—

another type of moral hazard. In this section, I show that while the introduction of public disclosure in

2008 reduced the average share of samples positive, the tightening of standards in 2011 raised the average

share of samples positive. The latter result is driven by the worst-performing establishments.

7.1. Empirical approach

Here, I use a regression discontinuity in time (RDiT) approach (Hausman and Rapson, 2018) to evaluate

the effects of each policy change on average Salmonella test results during a relatively narrow window
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around each policy change. As in section 5, I use sharp RD analysis with local linear regressions, triangular

kernel weighting, bandwidths chosen to minimize mean squared errors on either side of each cutoff, and

robust nonparametric confidence intervals (Calonico, Cattaneo, and Titiunik, 2014b; Cattaneo, Idrobo,

and Titiunik, 2020b; Cattaneo, Titiunik, and Vazquez-Bare, 2020). The regression equation is as follows:

(8) Yikt = α+ β1D1t + β2D2t + β3D3t + f(t) + εikt.

The running variable is the sample collection date and the three dates of policy changes are the cutoffs.

The binary dependent variable Yikt is the Salmonella test outcome for sample i at establishment k on

date t (positive = 1), Djt = 1 {t ≥ cj} for each of the three cutoffs cj , f (·) is a polynomial function that

can take on different values on either side of each cutoff, and εikt is the residual. The RD bandwidths are

selected separately for each date of policy change to minimize mean squared error on each side of each

cutoff date, as recommended by Cattaneo, Idrobo, and Titiunik (2020b). As discussed by Hausman and

Rapson (2018), tests for smoothness in density of the running variable are inappropriate to establish the

validity of RDiT designs.

As noted by Winship and Morgan (1999) and Morgan and Winship (2015, p. 356), the key identifying

assumption for the RDiT approach (which they refer to as interrupted time series) is that observations

from before the cutoff point can be used to predict what the outcome variable would have been, in

the absence of a treatment, in post-cutoff periods. One common reason that assumption may fail is

anticipation effects—for example, before a policy change that imposes a stricter standard, establishment

operators may adjust their operations (Baicker and Svoronos, 2019). If this occurred among chicken-

slaughter establishments before any of the policy changes, then my RDiT estimates would understate the

overall effects of the policy changes.29 Moreover, the RDiT approach estimates differences in outcomes

immediately before and after the dates of policy changes, so if responses to the policy changes were

delayed, my estimates would again understate the total effects (Shadish, Cook, and Campbell, 2002).30

7.2. Results: Effects of policy changes

Panel A of table 4 presents results from the RDiT model described by equation 8 using all observations

from all establishments. The results suggest that the introduction of public disclosure in 2008 led to a

5.1 percentage point reduction in the probability of positive Salmonella samples. Given that 9.2 percent

of samples tested positive for Salmonella during the 177 days before the policy change (i.e., the MSE-

optimal bandwidth), the introduction of public disclosure reduced Salmonella levels by 55 percent. The

other policy changes, in 2006 and 2011, had statistically insignificant effects on average test outcomes.

Including observations from establishments that were active in earlier periods but not in later periods

29With anticipation effects in mind, appendix B presents results for regulations that use the dates of Federal
Register announcements about policy changes as the cutoffs; the announcement dates had insignificant effects on
Salmonella test outcomes. Appendix B also presents various robustness and placebo tests for the RDiT analysis.

30The preceding comments about understated effects assume that all responses to a given policy change have the
same effect sign.
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may bias the results in panel A if, for example, establishments with worse food safety were more likely

to exit the industry for reasons unrelated to FSIS inspections and disclosure policies. Panel B drops all

establishments that were listed as “inactive” at the time the data set was created. In this way, panel B

achieves better balance of (unobserved) covariates than panel A. The results in panel B suggest again that

the introduction of public disclosure in 2008 led to a large (4.8 percentage point; 55 percent) reduction

in the probability of positive Salmonella samples, but that the subsequent tightening of the thresholds

in 2011 led to an even larger (6.8 percentage point; 139 percent) increase.31 Figure 7 depicts RD plots

that correspond with panel B of table 4. There are a couple of different possible interpretations of

the estimated increase in positive Salmonella samples starting in 2011, when removing establishments

that ever exited. One is that many establishments with worse performance may have exited around

the time of the 2011 policy change. If these establishments had similarly poor performance before and

after the standards change, keeping them as part of the analyzed sample would mask changes in average

Salmonella outcomes. The other possibility is that many operators of worse-performing establishments

remained active but may have given up on trying to meet the now more stringent standard necessary to

avoid disclosure.

To explore the first of these two possible interpretations, I query the data and find that ten estab-

lishments exited during the 2011–15 policy period. On average, these establishments had 8.8 percent of

samples test positive for Salmonella during this policy period, as compared with 4.0 percent for all other

establishments (p < 0.0001 for t-test for difference in means). However, only three of the ten ever reached

the 6-sample threshold necessary to be listed as Category 3 during the 2011–15 period. So, while the

establishments that exited during 2011–15 had worse Salmonella test results on average, it is not clear

that establishments exited because of the increased stringency that began in 2011.

The latter possible interpretation, that operators gave up on trying to meet the now more stringent

standard, appears to be more plausible. Table 5 shows the estimated RDiT effect of the 2008 and 2011

policy changes, splitting the samples by establishment-level average Salmonella test results over 2006–08

and 2008–11, respectively. The 2008 policy change is estimated to have reduced the share of samples

positive for establishments at each performance level, although the effect is only statistically significant

for those with average test results equivalent to Category 1. Establishments responded to the 2011 policy

change differently depending on their food-safety records. Establishments that had an average of more

than 5 out of 51 (about 9.8 percent) positive samples during the 2008–11 period (corresponding to the

2011–15 Category 3 threshold) had a 17.7 percentage point (111 percent) increase in the likelihood of

positive samples at the time of the 2011 policy change. Meanwhile, establishments with average test

results during 2008–11 that would place them in the new Category 2 (3 to 5 positive samples out of 51)

had a 3.9 percentage point decrease in positive samples at the time of the policy change. As stated above,

the overall effect was to greatly increase the share of samples positive, by 6.8 percentage points or about

139 percent, among establishments that remained active through January 2018.

31Panel B uses different bandwidths than panel A, again by minimizing mean squared error on each side of each
cutoff date. Percent changes are again calculated using the share of samples positive within the MSE-optimal
bandwidth before the policy changes as the baselines.
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To recap, the introduction of public disclosure in 2008 decreased the rate of positives by about

55 percent. When only considering establishments that remained active until 2018, the tightening of

standards in 2011 more than doubled the rate of positives, a result driven by the worst-performing

establishments. Whereas in prior periods, the incentive to shirk only had effects once establishments

crossed the disclosure threshold, after 2011 some establishments reduced effort even before crossing the

threshold—another form of moral hazard. It is clear that while the initial public disclosure policy was

successful in improving the average rate of positive Salmonella samples, the next policy change increased

incentives to shirk, worsened test outcomes, and more than offset the earlier improvement.

8. Summary and conclusion

Using carcass-level data on USDA inspections for Salmonella in chicken carcasses, this paper demonstrate

several ways in which chicken-slaughter establishments responded to incentives created by the inspection,

categorization, and disclosure policies. First, using a regression discontinuity approach, I demonstrate

when establishments failed to meet thresholds associated with better categorization outcomes that were

not associated with disclosure, their performance on subsequent Salmonella tests within the same sample

set worsened, a result I describe as shirking. There is also some evidence that prior to public disclosure,

establishments shirked after sustained good performance. During the initial public disclosure period,

there was no evidence of shirking after either good or poor performance resulted in known categorization

outcomes. One of several possible explanations is that buyers demanded that potential suppliers provide

additional information about Salmonella test results, beyond what was publicly disclosed, and that these

demands limited incentives to shirk during the initial disclosure period. In addition, when the threshold

that triggered disclosure was tightened in 2011, establishments were likely to shirk after poor performance

ensured disclosure.

Second, I document that when two or more categorization outcomes are possible and establishments

have more leeway with respect to the thresholds, their performance on Salmonella tests worsens.

Third, the initial public disclosure policy in 2008 reduced the average rate of positive Salmonella

samples by about 55 percent, but the subsequent tightening of standards in 2011 led some establishments

to considerably decrease efforts around Salmonella control and increased the average rate of positive

samples by 140 percent. The worst-performing establishments drove the overall decline in performance

after the 2011 tightening of standards, a result I attribute to another form of moral hazard or shirking.

The empirical results provide some insights about the design of information disclosure policies, es-

pecially disclosure of discrete (categorical) information. Disclosure of discrete information may be more

readily understood by buyers, particularly if the buyers are final consumers. As has been demonstrated

in other contexts, inspected entities have incentives to achieve better categorization but may shirk and

achieve worse quality if they do not meet categorical thresholds. From a different perspective, inspected

entities have incentives to just barely meet categorical thresholds (Makofske, 2023), but may shirk if

thresholds are not met. In this particular context, shirking was apparent when categorical information

was conveyed privately to slaughter establishments but not when the categorical information was posted
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publicly (until standards were tightened). Thus, one policy lesson is that if categorization is used, the

categorization outcomes should be made public.

A second policy lesson is that disclosing categorical information about quality does not incentivize all

producers to make effort to improve quality. The tightening of standards in 2011 resulted in worse aver-

age Salmonella test outcomes. Some establishment operators apparently judged the new non-disclosure

standard too stringent to attain and gave up on trying. In some settings, especially when intermediary

buyers are expected to be the parties mainly interested in knowing the outcomes, disclosing continuous

(rather than discrete or categorical) information about quality or imposing financial penalties or other

sanctions for very poor performance may be necessary to incentivize quality improvements.

There are some limitations to this study, naturally. The formal tests for manipulability of the running

variable in the RD models on categorization fail because of the lumpy nature of the running variable.

The identification strategy used in section 6 to study the relationship between leeway and test results

when two or more categories were possible may not permit causal claims. There are some drawbacks to

the data set I obtained from FSIS, too. It has very few time-varying covariates that could be used in any

of the regressions, and there is some uncertainty about the sample sets I reconstructed for this analysis.

Nonetheless, the paper shows convincingly that slaughter establishments responded to both well-designed

and perverse incentives created by the FSIS testing and disclosure system.
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Figure 1: Policy regimes and dates of implementation

Notes: FSIS Salmonella testing began prior to 1999 and is still ongoing. Additional, later, policy
changes are discussed in Appendix C.
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Figure 2: Monthly average share of Salmonella samples positive, with fitted OLS regression

0
.0

5
.1

.1
5

.2

1999m1 2001m1 2003m1 2005m1 2007m1 2009m1 2011m1 2013m1 2015m1 2017m1

Monthly average share of samples positive Fitted values

Note: OLS regression is fitted to monthly average data.

30



Figure 3: Histograms of the number of positive samples per sample set, by policy period
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Notes: Each panel represents the density of the number of positive samples per 51-sample set, for
each policy period. Vertical lines represent the regulatory threshold (until 2006) and the category
thresholds (starting in 2006). Number of 51-sample-set observations per period: 1,204 (1999 to
2006); 357 (2006 to 2008); 341 (2008 to 2011); 488 (2011 to 2015).
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Figure 4: Motivating the analysis of moral hazard
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Notes: This figure illustrates how having more leeway with respect to the categorization
threshold affects the incentives for establishments to control Salmonella. (In this paper, leeway is
the share of remaining samples within a sample set that may test positive if an establishment is
to achieve a certain categorization; categorization is determined by the total number of samples
testing positive within the sample set.) When leeway ≥ 1, incentives to control Salmonella are
weak, because the establishment may have 100% of remaining samples test positive and still be
categorized the same way. When leeway < 0, incentives are also weak because even if none of the
remaining samples test positive, the establishment will still fail to achieve the threshold
associated with the better categorization. When 0 ≤ leeway < 1, incentives decrease with leeway
because with more leeway, establishments may have a higher share of remaining samples test
positive and still achieve the threshold associated with the better categorization.
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Figure 5: RD plots: effects of known categorization (cutoffs not associated with disclosure) on
Salmonella outcomes

Notes: These RD plots provide graphical evidence corresponding with panel A in table 2, within
the ranges of the running variables that correspond with the MSE-optimal bandwidths used in
table 2. Quantile-spaced bins are generated using integrated MSE-optimal spacings estimators
(Calonico, Cattaneo, and Titiunik, 2014a, 2015). Fit lines are not included because they tend to
increase the type I error rate of visual inference (Korting et al., 2023). The leeway2 = 1
threshold is not shown in the lower-right plot because leeway2 takes on only two different values
at and above the cutoff so the RD model cannot be estimated around this threshold.
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Figure 6: RD plots: effects of known categorization (cutoffs associated with disclosure) on
Salmonella outcomes

Notes: These RD plots provide graphical evidence corresponding with panel B in table 2. See
additional notes to figure 5.
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Figure 7: RD in time plot
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Notes: This RD plot provides graphical evidence corresponding with panel B in table 4, within
the temporal range that corresponds with the MSE-optimal bandwidths used in table 4. As in
figures 5 and 6, quantile-spaced bins are generated using integrated MSE-optimal spacings
estimators (Calonico, Cattaneo, and Titiunik, 2014a, 2015), and fit lines are not included
because they tend to increase the type I error rate of visual inference (Korting et al., 2023).
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Table 1: Number of sample sets by category and average share of samples positive for Salmonella, by period, 1999–2015

Public disclosure
Policy regime No categorization Categorization (private) Public disclosure w/ tighter standards
Years 1999 to 2006 2006 to 2008 2008 to 2011 2011 to 2015

Number of Category 1 sets (share) 726 .603 266 .749 304 .851 428 .821
Number of Category 2 sets (share) 325 .270 71 .200 43 .120 61 .117
Number of Category 3 sets (share) 152 .126 18 .051 10 .028 32 .061
Share of samples positive (Number of obs.) .129 71398 .100 20406 .068 21478 .042 35083

Notes: Number of sample sets in each category reflects sets ending in the period indicated. For 12 sets that had fewer than 51
observations, categorization could not be assigned. Since categorization was not in place until 2006, the number of sets in each category
for 1999 to 2006 are listed based on the criteria in place from 2006 to 2011.
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Table 2: Effects of known categorization on Salmonella test outcomes

Panel A: Cutoffs not associated with disclosure
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards
Years 1999 to 2006 2006 to 2008 2011 to 2015

Threshold D0 = 1 D1 = 1 D0 = 1 D1 = 1 D0 = 1 D1 = 1 D0 = 1
Implication Fails std. Meets std. Cat. 2 or 3 Cat. 1 Cat. 3 Cat. 1 or 2 Cat. 2 or 3
Max. # pos. samples (κ) 12 12 6 6 12 12 2

(1) (2) (3) (4) (5) (6) (7)

Known categorization (D0 = 1 or D1 = 1) 0.034 0.029 0.084 0.049 0.149 0.102 0.078
Robust p-value 0.054 0.300 0.086 0.608 0.024 0.007 0.008
95% CI (lower limit) −0.00 −0.03 −0.01 −0.07 0.03 0.03 0.01

(upper limit) 0.13 0.11 0.12 0.04 0.45 0.21 0.10
Observations 6623 8464 16153 15426 13231 2733 24546
Left bandwidth 1.12 0.19 1.66 1.00 1.02 0.18 2.02
Right bandwidth 0.21 3.15 0.59 2.92 0.64 2.34 0.26

Panel B: Cutoffs associated with disclosure
Public disclosure

Policy regime Public disclosure w/ tighter standards
Years 2008 to 2011 2011 to 2015

Threshold D0 = 1 D1 = 1 D0 = 1 D1 = 1 D0 = 1 D1 = 1
Implication Cat. 2 or 3 Cat. 1 Cat. 3 Cat. 1 or 2 Cat. 3 Cat. 1 or 2
Max. # pos. samples (κ) 6 6 12 12 5 5

(1) (2) (3) (4) (5) (6)

Known categorization (D0 = 1 or D1 = 1) 0.015 0.021 −0.085 −0.018 0.158 0.001
Robust p-value 0.710 0.179 0.824 0.633 0.045 0.139
95% CI (lower limit) −0.08 −0.08 −0.21 −0.09 0.00 −0.05

(upper limit) 0.06 0.02 0.17 0.05 0.21 0.01
Observations 14512 16051 5339 3380 18969 25531
Left bandwidth 0.70 0.98 0.61 0.23 0.95 1.00
Right bandwidth 0.42 2.56 0.29 2.15 0.26 2.26

Notes: Each pair or quartet of columns represents regressions using carcass-level observations from the policy regimes beginning and ending in the
indicated years. For sample sets that span the dates of policy change, observations are included in the later period if the samples were taken after the
Federal Register announcement of the policy change. All regressions are local linear RD regressions with triangular kernels, using leewayκ as the
running variable, as described in the text. D0 = 1 if leewayκ < 0 and D1 = 1 if leewayκ ≥ 1; each of these conditions are equivalent to the known
categorization outcomes reflected by the Implication rows in the table. Bandwidths, robust p-values, and confidence intervals are calculated using the
rdms command in Stata (Cattaneo, Titiunik, and Vazquez-Bare, 2020), clustering on establishment using nearest-neighbor estimation for the
variance-covariance estimator. Bandwidths are chosen to minimize mean squared error on either side of each cutoff. The RD models cannot be
estimated for D1 = 1 and κ = 2 for 2011–15 because the running variable takes on too few different values at and above the cutoff leewayκ = 1
(namely, the only possible values are 1 and 2).
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Table 3: Effects of distance from category thresholds on Salmonella test outcomes, 1999–2015

Public disclosure
Policy regime No categorization Categorization (private) Public disclosure w/ tighter standards
Years 1999 to 2006 2006 to 2008 2008 to 2011 2011 to 2015

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A
Distance from Cat. 1 threshold 0.124 0.105 0.141 0.130 0.156 0.156 0.0404 0.0349

(0.015) (0.015) (0.023) (0.025) (0.021) (0.022) (0.011) (0.012)
Test number, current sample set -0.000224 -0.000139 -0.000327 -0.000305 -0.00144 -0.00157 -0.0000336 -0.0000137

(0.00015) (0.00017) (0.00025) (0.00030) (0.00026) (0.00030) (0.00011) (0.00012)
Share of samples positive, current sample set -0.263 -0.354 -0.284 -0.273

(0.024) (0.063) (0.058) (0.041)
Observations 49064 47860 15351 15021 15427 15086 23917 23393
Elasticity 0.20 0.18 0.31 0.28 0.59 0.60 0.19 0.17

Panel B
Distance from Cat. 2 threshold 0.211 0.197 0.227 0.224 0.273 0.279 0.0847 0.0776

(0.017) (0.018) (0.036) (0.042) (0.034) (0.037) (0.014) (0.014)
Test number, current sample set -0.00239 -0.00232 -0.00259 -0.00270 -0.00424 -0.00453 -0.000872 -0.000807

(0.00024) (0.00027) (0.00053) (0.00064) (0.00056) (0.00063) (0.00017) (0.00018)
Share of samples positive, current sample set -0.197 -0.265 -0.197 -0.168

(0.024) (0.055) (0.059) (0.033)
Observations 50771 49567 14633 14303 14400 14059 24009 23485
Elasticity 0.60 0.57 0.90 0.90 1.63 1.70 0.74 0.71

Notes: Panel A demonstrates the effects of distance from the Category 1 thresholds (i.e., the value of leeway6 from 1999 to 2011 and leeway2 from
2011 to 2015) on Salmonella test outcomes. Panel B demonstrates the effects of distance from the Category 2 thresholds (i.e., the value of leeway12
from 1999 to 2011 and leeway5 from 2011 to 2015). Horizontally, each pair of columns represents regressions using carcass-level observations from the
policy regimes beginning and ending in the indicated years. For sample sets that span the dates of policy change, observations are included in the
later period if the samples were taken after the Federal Register announcement of the policy change. All regressions use establishment–sample-set
fixed effects. Standard errors, clustered by establishment, are given in parentheses. Elasticities reported are the elasticities of the share of samples
positive with respect to leewayκ, calculated using the mean share of samples positive and the mean value of leewayκ. Observations are included only
if leewayκ ∈ [0, 1).
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Table 4: Effects of policy changes on average Salmonella test outcomes

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards
Date of implementation (c) 5/30/2006 3/28/2008 7/1/2011

(1) (2) (3)

Panel A: All establishments included
t ≥ c 0.020 −0.051 0.058
Robust p-value 0.501 0.008 0.108
95% CI (lower limit) −0.04 −0.10 −0.02

(upper limit) 0.07 −0.02 0.16
Observations 17230 8537 6271
Left bandwidth 386 177 252
Right bandwidth 183 267 202

Panel B: Establishments that ever exited excluded
t ≥ c 0.031 −0.048 0.068
Robust p-value 0.211 0.018 0.026
95% CI (lower limit) −0.02 −0.09 0.01

(upper limit) 0.10 −0.01 0.15
Observations 16746 7912 5555
Left bandwidth 371 194 204
Right bandwidth 265 271 232

Notes: This table reports the results of RD in time regressions that use the dates of policy implementation as the cutoffs (c).
All regressions use carcass-level observations; the dependent variable is binary with a value of 1 if the Salmonella test result is
positive. The regressions are local linear RD regressions with triangular kernels, using the sample collection date as the running
variable, as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms
command in Stata (Cattaneo, Titiunik, and Vazquez-Bare, 2020). Bandwidths are chosen to minimize mean squared error on
either side of each cutoff.
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Table 5: Heterogeneous effects of policy changes on average Salmonella test outcomes

Average pre-period Salmonella test performance equivalent to Category 1 Category 2 Category 3
(1) (2) (3)

2008 policy change (c = 3/28/2008)
t ≥ c −0.038 −0.057 −0.047
Robust p-value 0.028 0.159 0.737
95% CI (lower limit) −0.08 −0.13 −0.30

(upper limit) −0.00 0.02 0.21
Observations 5222 2592 389
Left bandwidth 207 244 183
Right bandwidth 232 371 259

2011 policy change (c = 7/1/2011)
t ≥ c 0.037 −0.039 0.177
Robust p-value 0.275 0.081 0.030
95% CI (lower limit) −0.04 −0.10 0.02

(upper limit) 0.13 0.01 0.38
Observations 5549 3505 1632
Left bandwidth 266 210 240
Right bandwidth 487 358 222

Notes: This table reports the results of RD in time regressions that use the dates of policy implementation as the cutoffs (c).
All regressions use carcass-level observations; the dependent variable is binary with a value of 1 if the Salmonella test result is
positive. The regressions are local linear RD regressions with triangular kernels, using the sample collection date as the running
variable, as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms
command in Stata (Cattaneo, Titiunik, and Vazquez-Bare, 2020). For the 2008 policy change, column (1) uses observations
from establishments with an average of no more than 11.8 percent positive samples (equivalent to ≤ 6/51) during the 2006–08
period; column (2) uses observations from establishments with more than 11.8 percent but no more than 23.5 percent
(equivalent to ≤ 12/51) during 2006–08; column (3) uses observations from establishments with more than 23.5 percent
positive samples. For the 2011 policy change, column (1) uses observations from establishments with an average of no more
than 3.9 percent positive samples (equivalent to ≤ 2/51) during the 2008–11 period; column (2) uses observations from
establishments with more than 3.9 percent but no more than 9.8 percent (equivalent to ≤ 5/51) during 2008–11; column (3)
uses observations from establishments with more than 9.8 percent positive samples.
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Appendix A: Details on data-cleaning procedure

The data set I obtained from FSIS does not include any indication of the sample-set groupings that were

used to determine regulatory compliance and category designation over 1999–2015, and FSIS did not

provide further guidance on this issue. Inspection of the data reveals clear patterns of 51 samples being

collected over a short period, followed by a gap (often, approximately one year) before another set of

51 samples. However, it is clear that inspectors often collected slightly more and occasionally slightly

fewer than 51 samples. FSIS personnel confirmed that inspectors were supposed to collect samples until

results from 51 tests were available, which explains the frequent appearance of 52 to 56 samples over a

brief period, followed by a gap. FSIS also sometimes terminated collection before reaching 51 samples,

if a threshold was certain to be exceeded. After some preliminary data cleaning to eliminate duplicate

observations, I assign observations into sample sets by identifying lengthy gaps between observations

while maximizing the number of sample sets with 51 observations. Specifically, I identify the start of

a new sample set as occurring when the gap between observations was at least x times as long as the

average gap over the previous 51 observations, where x is chosen for each policy period as the integer

that maximizes the number of sample sets with 51 observations. This method generates sample sets with

lengths reasonably close to the expected length: at least 80% of all sample sets in each of the regulatory

periods have 50 to 56 observations. To eliminate noise that would be generated through mis-assigning

observations to sample sets, for the main analysis of sections 5 and 6, I only include observations from

sample sets of length [n, ..., N ], where n and N are the minimum and maximum sample-set lengths such

that at least 1% of sample sets have lengths n and N . Note again that the 51-sample sets were eliminated

effective May 6, 2015.
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Appendix B: Robustness and placebo tests

This appendix provides the results of various robustness and placebo tests described in the text.

Effects of known categorization: Placebo tests

Table B1 presents the results of RD models that use placebo cutoffs near the c = 0 and c = 1 cutoffs

that yield significant estimates in table 2. As discussed in the main body of the paper, only three of the

36 cutoffs in table B1 have statistically significant coefficients with p < 0.1 and with the correct, positive

sign; the distribution of p-values is approximately uniform. In conclusion, the placebo cutoffs do not raise

concerns about the validity of the main results.

Effects of policy changes: robustness tests

This appendix subsection presents the results of robustness tests relevant to the RDiT design discussed in

section 7. For RDiT approaches to analysis of policy changes, Hausman and Rapson (2018) recommend

a few additional robustness tests.32 First, as recommended by Cattaneo, Idrobo, and Titiunik (2020a)

for RD designs where the data have many “mass points”, I collapse the data set and use the daily share

of samples positive, across all establishments, as my dependent variable. The results, in panel A of

table B2, essentially conform with the results in panel B of table 4: the introduction of public disclosure

in 2008 led to a 4.5 percentage point decrease in the share of samples positive, while the tightening of

standards in 2011 led to a 6.3 percentage point increase. In this specification, the 2006 introduction of

the categorization system is also estimated to have led to a statistically significant 3.4 percentage point

increase in the share of samples positive. The result for 2006 is of the same sign as the insignificant result

shown for that year in table 4, but is of larger magnitude.

Second, I employ a “donut” approach as recommended by Barreca et al. (2011) to ensure that

Salmonella sampling dates were not subject to manipulation around the dates of the policy changes,

which might have occurred if sampling dates were misreported or establishments briefly shut down before

or after policy changes. These results are again similar to the main results in table 4. The donut specifica-

tions, removing all observations within 1 to 7 days on both sides of policy changes, yield somewhat larger

estimated effects of the 2008 policy change (a 4.9 to 5.8 percentage point decrease in the share of samples

positive) and somewhat smaller estimated effects of the 2011 policy change (a 5.5 to 6.7 percentage point

increase) than the main specification. Panel B of table B2 shows results for the RDiT regression with

all observations within 7 days of the policy changes removed. In all of the donut specifications, the 2006

policy change is estimated to have insignificant effects on the share of samples positive.

Third, I drop all observations belonging to sample sets that span two policy periods. Under the

policy regimes in place through 2015, category status was assigned on the basis of sample sets as they

were completed; incomplete sample sets were not reset at the time of the policy changes. When I drop

32All results described in the rest of this appendix use the same data set as panel B of table 4, dropping all
establishments that ever exited.
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observations from sample sets that span policy periods, the estimated RDiT effects change somewhat: the

introduction of disclosure in 2008 resulted in a 2.9 percentage point decrease in the share of samples posi-

tive (though not statistically significant), while the 2011 tightening of standards led to an 11.1 percentage

point increase (p = 0.002). The 2006 policy change had an insignificant effect.

While the various specifications yield somewhat different point estimates, the sign and magnitude

of the estimates are fairly consistent. The introduction of mandatory disclosure in 2008 resulted in a

significant improvement in average Salmonella test results, roughly a 55 percent reduction in the share

of samples positive. Perversely, though, the tightening of standards in 2011 resulted in a significant

worsening of test results, more than doubling the share of samples positive.

As another robustness test, I use several sets of placebo dates of policy changes. Each policy change

was preceded by an announcement in the Federal Register about the scheduled policy change. In Panel A

of table B3, I use the dates of the relevant Federal Register announcements as the cutoffs. I find that

Salmonella test results did not change discontinuously at the dates of the announcements. In Panels B

through E of table B3, I use placebo dates 120, 240, 360, and 480 days before the actual policy changes.

Under the null hypothesis, with 12 placebo cutoff values, one placebo would be expected to have p ≤ 0.083.

In table B3, the lowest p-value is 0.094. We can therefore conclude that the placebo effects are the

consequence of random variation and that the estimated effects of the policy changes in table 4 are valid.
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Table B1: Placebo effects of known categorization on Salmonella outcomes

(1) (2) (3) (4) (5) (6)
Placebo RD cutoff (c) −0.15 −0.1 −0.05 0.05 0.1 0.15

Panel A: 1999 to 2006, κ = 12 positive samples
Dp

0 = 1 −0.021 0.016 0.076 −0.063 −0.053 0.001
Robust p-value 0.554 0.427 0.107 0.009 0.010 0.844

Panel B: 2006 to 2008, κ = 6 positive samples
Dp

0 = 1 0.024 −0.030 0.001 −0.016 0.004 −0.009
Robust p-value 0.437 0.195 0.597 0.317 0.866 0.235

Panel C: 2006 to 2008, κ = 12 positive samples
Dp

0 = 1 0.070 0.070 0.018 −0.096 −0.158 −0.071
Robust p-value 0.221 0.194 0.924 0.096 0.041 0.262

Panel D: 2011 to 2015, κ = 2 positive samples
Dp

0 = 1 0.059 0.011 −0.018 0.004 −0.013 −0.023
Robust p-value 0.086 0.807 0.110 0.345 0.002 0.000

Panel E: 2011 to 2015, κ = 5 positive samples
Dp

0 = 1 −0.056 −0.022 0.102 0.001 0.035 −0.011
Robust p-value 0.181 0.331 0.430 0.796 0.000 0.019

Placebo RD cutoff (c) 0.8 0.85 0.9 1.05 1.1 1.15

Panel F: 2006 to 2008, κ = 12 positive samples
Dp

1 = 1 −0.007 0.014 0.008 0.056 0.010 −0.011
Robust p-value 0.827 0.517 0.761 0.042 0.832 0.528

Notes: This table presents results of regressions paralleling those in table 2 with statistically significant results but for placebo cutoffs
not associated with any change in disclosure status. Dp

0 and Dp
1 are analogous to D0 and D1 in table 2 but use the placebo cutoffs

indicated at the top of the columns. Panels A through E report results for three placebo cutoffs on either side of the actual cutoff
(c = 0) according to c± 0.05n, where n = {1, 2, 3}. Panel F uses the nearest placebo cutoffs to the actual cutoff (c = 1) that are
multiples of 0.05, for which there are enough observations on either side of the placebo cutoffs to estimate the optimal bandwidths. Each
panel represents regressions using observations from the policy regimes beginning and ending in the indicated years. For sample sets
that span the dates of policy change, observations are included in the later period if the samples were taken after the Federal Register
announcement that preceded the policy change. All regressions are local linear RD regressions with triangular kernels, using leewayκ as
the running variable. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata (Cattaneo,
Titiunik, and Vazquez-Bare, 2020), although bandwidths and confidence intervals are suppressed in this table. Bandwidths are chosen to
minimize mean squared error on either side of each cutoff.
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Table B2: Effects of policy changes on average Salmonella test outcomes: Robustness tests

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards
Date of implementation (c) 5/30/2006 3/28/2008 7/1/2011

(1) (2) (3)

Panel A: Observations collapsed by sample collection date
t ≥ c 0.034 −0.045 0.063
Robust p-value 0.046 0.015 0.001
95% CI (lower limit) 0.00 −0.07 0.03

(upper limit) 0.08 −0.01 0.12
Observations 381 326 380
Left bandwidth 372 275 284
Right bandwidth 175 200 260

Panel B: “Donut” approach: Drop all observations within 7 days of policy changes
t ≥ c 0.024 −0.057 0.055
Robust p-value 0.294 0.039 0.088
95% CI (lower limit) −0.03 −0.11 −0.01

(upper limit) 0.10 −0.00 0.14
Observations 15236 7183 5414
Left bandwidth 366 204 199
Right bandwidth 220 237 233

Panel C: Drop all observations belonging to sample sets that span policy periods
t ≥ c 0.034 −0.029 0.111
Robust p-value 0.248 0.385 0.002
95% CI (lower limit) −0.03 −0.11 0.05

(upper limit) 0.13 0.04 0.21
Observations 11540 3625 3692
Left bandwidth 345 148 177
Right bandwidth 212 199 258

Notes: See notes to table 4.
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Table B3: Effects of policy changes on average Salmonella test outcomes: Placebo cutoff dates

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards

(1) (2) (3)

Panel A: Cutoffs c = Federal Register announcement dates
t ≥ c −0.038 −0.031 0.015
Robust p-value 0.640 0.883 0.269
95% CI (lower limit) −0.15 −0.10 −0.01

(upper limit) 0.09 0.08 0.05
Observations 9621 3289 5747
Left bandwidth 356 172 165
Right bandwidth 89 60 139

Panel B: Cutoffs c = 120 days before policy changes
t ≥ c −0.015 0.022 −0.008
Robust p-value 0.877 0.334 0.915
95% CI (lower limit) −0.07 −0.04 −0.04

(upper limit) 0.08 0.12 0.05
Observations 11627 2664 2944
Left bandwidth 426 144 174
Right bandwidth 117 38 120

Panel C: Cutoffs c = 240 days before policy changes
t ≥ c −0.018 0.053 0.002
Robust p-value 0.187 0.236 0.925
95% CI (lower limit) −0.07 −0.04 −0.09

(upper limit) 0.01 0.16 0.08
Observations 27891 4213 7277
Left bandwidth 1190 96 294
Right bandwidth 237 104 113

Panel D: Cutoffs c = 360 days before policy changes
t ≥ c 0.019 0.029 0.030
Robust p-value 0.573 0.094 0.111
95% CI (lower limit) −0.08 −0.01 −0.01

(upper limit) 0.15 0.08 0.08
Observations 15410 4474 6121
Left bandwidth 523 68 235
Right bandwidth 146 76 112

Panel E: Cutoffs c = 480 days before policy changes
t ≥ c −0.026 0.032 −0.006
Robust p-value 0.226 0.204 0.988
95% CI (lower limit) −0.11 −0.02 −0.06

(upper limit) 0.03 0.08 0.06
Observations 13538 5298 6117
Left bandwidth 545 66 238
Right bandwidth 160 130 108

Notes: For additional details on the regression specifications, see notes to table 4.



Appendix C: Analysis of additional policy regimes in place over 2015–2017

For clarity and ease of exposition, the body of the paper analyzes Salmonella test outcomes and shirking

only for the four policy periods in place from 1999 until May 5, 2015. The data set I obtained from FSIS

by FOIA request covers two additional policy regimes. This appendix describes those policy regimes and

analysis of shirking or moral hazard over these periods.

Effective May 6, 2015, the 51-sample-set framework was replaced with a system of categorization

based on aggregated results over rolling 52-week windows. Under the new system, categories were defined

using the same shares: an establishment with more than 9.8% of samples positive (i.e., 5/51) during

any window of the windows ending the previous month would be placed on the Category 3 list and

would remain on that list for a three-month period. The rolling-window system was introduced because

FSIS officials recognized that under the sample-set system, establishment operators might increase efforts

related to Salmonella control during the weeks that establishments were under scrutiny but shirk during

all other weeks of the year.33 Moreover, the rolling-window system seemed it would be an effective way

to mitigate shirking: each week, a new rolling window began, so the end-of-sample-set incentives to shirk

might be countered by incentives to obtain good categorization in the coming year.

Shortly after the rolling-window system was introduced, FSIS began using a new chemical solution

(neutralizing buffered peptone water) as part of the test procedure.34 After this change, which was

implemented on July 1, 2016, the share of positive test results rapidly rose, and on November 20, 2016,

FSIS suspended public disclosure of Salmonella category information for chicken-slaughter establishments

but continued to sample carcasses for Salmonella. No date was given for the resumption of disclosure;

on December 15, 2017, FSIS announced that disclosure would resume the following month. Thus, during

the final period analyzed, there were no immediate consequences for poor test outcomes. Establishment

operators may have anticipated that the tests might ultimately be incorporated into their categorization,

but they would not have known this for certain.

Tables C1, C3, and C4 in this appendix present the results of regression models equivalent to those

in tables 2, 3 and 4, covering the periods 2015–16 (rolling windows) and 2016–17 (disclosure hiatus).

Figures C1 and C2 present RD plots that correspond to tables C1 and C4. Tables C2, C5, and C6

present robustness and placebo tests equivalent to those in appendix B, covering the periods 2015–16 and

2016–17.

Effects of known categorization on Salmonella test outcomes, 2015–17

RD plots for the 2015–16 and 2016–17 periods are shown in figure C1, and regression results equivalent

to those shown in table 2 are shown in table C1. During the 2015–16 period, sample sets were no longer

used and establishments with more than 9.8 percent of samples positive during any 52-week window

ending within the last three months were listed as Category 3 on the FSIS website. Similar to the 2008–

33See https://www.federalregister.gov/documents/2015/01/26/2015-01323/changes-to-the-salmonella-and-
campylobacter-verification-testing-program-proposed-performance, page 3945.

34See https://www.govinfo.gov/content/pkg/FR-2018-11-09/pdf/2018-24540.pdf.
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11 period, establishment operators apparently exerted effort to meet the Category 1 standard but then

reduced effort once exceeding the threshold. Establishments were 4.1 percentage points more likely to have

positive samples after failing to meet the Category 1 standard for the soonest-ending window (table C1,

panel A, column 1). In addition, during this period, establishments appear to have reduced effort after

good performance ensured they would meet the Category 2 standard and therefore avoid information

disclosure. Establishments were 5.2 percentage points more likely to have positive samples after meeting

the Category 2 standard for the soonest-ending window during 2015–16 (table C1, Panel B, column 2).

Under the hiatus in disclosure (2016–17), crossing thresholds associated with any of the categories

had statistically insignificant effects on Salmonella test outcomes.

Table C2 presents results for regressions parallel to those in table C1 using placebo cutoff values

for the running variables (leewayκ). Similar to table B1, the thresholds shown here are placebo cutoffs

near the statistically significant estimates from table C1. Specifically, the placebo cutoff values are three

multiples of 0.05 in either direction from c = 0; and the nearest multiples of 0.05 to c = 1 for which optimal

bandwidths (in the sense of minimizing mean squared errors) could be computed using the rdms command

in Stata (Cattaneo et al., 2020c). In table C2, three of the 12 RD coefficients are statistically significant

with p < 0.1, but none of these have the correct (i.e., positive) sign. Moreover, when considering the

results in table C2 together with those in table B1, only three of the 48 coefficients have the correct sign

and p < 0.1. In conclusion, the placebo tests do not raise significant concerns about the conclusions

drawn from table C1.

Distance from thresholds and Salmonella test outcomes, 2015–17

Table C3 presents results of regressions that demonstrate the positive correlations between leeway2

(leeway5) for the soonest-ending window and the likelihood of positive Salmonella test results. The

regressions are similar to those in table 3, except that FSIS did not use sample sets during these periods.

So, instead of using sample sets to calculate the values of the running variable leeway and the regressor for

share of samples positive, these regressions use the soonest-ending window. Also, they use establishment–

month–year fixed effects instead of establishment–sample-set fixed effects. In 2015–16, when the leeway2

value was 10 percentage points higher, the probability of a positive Salmonella test result was 2.00 per-

centage points higher (p = 0.012; elasticity = 0.92; panel A, column 2). Under the disclosure hiatus,

there was no statistically significant relationship between leeway2 and Salmonella test results in the

preferred specification, which controls for the share of samples positive in the soonest-ending window.

When the leeway5 value was 10 percentage points higher, the probability of a positive Salmonella test

result was 3.03 percentage points higher in 2015–16 (p < 0.001; elasticity = 3.36; panel B, column 2) and

4.16 percentage points higher in 2016–17 (p = 0.018; elasticity = 0.55; panel B, column 4).

Although the correlation between leeway2 and positive Salmonella test results lessened under the

disclosure hiatus from 2016 to 2017, the correlation between leeway5 and test results increased in this

period, relative to 2011–15 and 2015–16. In other words, establishment operators appear to have relaxed

efforts around Salmonella control when they had more leeway with respect to the Category 2/3 threshold,
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and did so more in 2016–17 than during the earlier periods when the same threshold applied.

Effects of policy changes, 2015 and 2016

Table C4 presents results of RDiT regressions for the policy changes in 2015 and 2016. Figure C2

presents a corresponding RD plot. These policy changes had insignificant effects on average Salmonella

test outcomes under the main specifications.35 When collapsing the data set and using the daily share of

samples positive as the dependent variable (rather than carcass-level test results), the 2015 introduction

of rolling windows is estimated to have decreased the share of samples positive by 2.6 percentage points,

evidence of the effectiveness of the rolling-windows system (table C5, panel A, column 1). The additional

robustness tests and placebo tests presented in tables C5 and C6 do not raise concerns about the validity

of the main result. In conclusion, the 2015 introduction of rolling windows may have improved average

test results, but the estimated effects are not as robust as those presented in table 4, which shows that

the introduction of public disclosure in 2008 reduced the share of samples positive by about 55 percent.

35In figure C2, a large rise in the share of samples positive starting July 1, 2016, can be seen. As mentioned
above, this can be attributed to a change in the FSIS test procedure. The bandwidths used in estimating the effects
of the 2015 and 2016 policy changes do not include July 1, 2016, when the test procedure changed.
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Figure C1: RD plots: effects of known categorization on Salmonella outcomes
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Notes: These RD plots provide graphical evidence corresponding with table C1, within the
ranges of the running variables that correspond with the MSE-optimal bandwidths used in
table C1. As in figures 5 and 6, quantile-spaced bins are generated using integrated MSE-optimal
spacings estimators (Calonico, Cattaneo, and Titiunik, 2014a, 2015), and fit lines are not
included because they tend to increase the type I error rate of visual inference (Korting et al.,
2023). The leeway2 = 1 threshold is not shown in the upper two plots because leeway2 takes on
only two different values at and above the cutoff so the RD models cannot be estimated around
this threshold.
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Figure C2: RD in time plot
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Notes: This RD plot provides graphical evidence corresponding with panel B of table C4, within
the temporal range that corresponds with the MSE-optimal bandwidths used in table C4. As in
figure 7, quantile-spaced bins are generated using integrated MSE-optimal spacings estimators
(Calonico, Cattaneo, and Titiunik, 2014a, 2015), and fit lines are not included because they tend
to increase the type I error rate of visual inference (Korting et al., 2023).
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Table C1: Effects of known categorization on Salmonella outcomes, 2015–17

Panel A: Cutoffs not associated with disclosure
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

Threshold D0 = 1 D0 = 1
Implication Cat. 2 or 3 Cat. 2 or 3
Max. # pos. samples (κ) 2 2

(1) (2)

Known categorization (D0 = 1) 0.041 0.029
Robust p-value 0.047 0.125
95% CI (lower limit) 0.00 −0.01

(upper limit) 0.08 0.07
Observations 7467 4390
Left bandwidth 2.13 2.49
Right bandwidth 0.08 0.67

Panel B: Cutoffs associated with disclosure
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

Threshold D0 = 1 D1 = 1 D0 = 1 D1 = 1
Implication Cat. 3 Cat. 1 or 2 Cat. 3 Cat. 1 or 2
Max. # pos. samples (κ) 5 5 5 5

(1) (2) (3) (4)

Known categorization (D0 = 1 or D1 = 1) 0.125 0.052 −0.004 −0.107
Robust p-value 0.217 0.008 0.860 0.587
95% CI (lower limit) −0.03 0.01 −0.06 −0.60

(upper limit) 0.15 0.09 0.05 1.05
Observations 7435 8494 2365 4145
Left bandwidth 1.27 1.00 3.72 1.00
Right bandwidth 0.62 1.48 0.67 2.02

Notes: Each regression uses observations from the policy regimes beginning and ending in the
indicated years. All regressions are local linear RD regressions with triangular kernels, using
leewayκ as the running variable, as described in the text. D0 = 1 if leewayκ < 0 and D1 = 1 if
leewayκ ≥ 1; each of these conditions are equivalent to the known categorization outcomes
reflected by the Implications rows in the table. Bandwidths, robust p-values, and confidence
intervals are calculated using the rdms command in Stata (Cattaneo, Titiunik, and
Vazquez-Bare, 2020), clustering on establishment using nearest-neighbor estimation for the
variance-covariance estimator. Bandwidths are chosen to minimize mean squared error on either
side of each cutoff. The RD models cannot be estimated with D1 = 1 and κ = 2 because the
running variable takes on too few different values at and above the cutoff c = 1 (namely, the only
possible values are 1 and 2).
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Table C2: Placebo effects of known categorization on Salmonella outcomes

(1) (2) (3) (4) (5) (6)
Placebo RD cutoff (c) −0.15 −0.1 −0.05 0.1 0.15 0.2

Panel A: 2015 to 2016, κ = 2 positive samples
Dp

0 = 1 −0.015 0.011 0.032 −0.002 −0.003 −0.010
Robust p-value 0.295 0.715 0.589 0.756 0.799 0.039

Placebo RD cutoff (c) 0.7 0.75 0.8 1.25 1.3 1.5

Panel B: 2015 to 2016, κ = 5 positive samples
Dp

1 = 1 0.035 0.032 0.039 −0.048 −0.036 −0.015
Robust p-value 0.102 0.268 0.130 0.001 0.020 0.878

Notes: This table presents results of regressions paralleling those in table C1 with statistically significant results but for
placebo cutoffs not associated with any change in disclosure status. Each panel uses the nearest placebo cutoffs to the actual
cutoff (c = 0 in panel A; c = 1 in panel B) that are multiples of 0.05, for which there are enough observations on either side of
the placebo cutoffs to estimate the optimal bandwidths around c. Each panel represents regressions using observations from the
policy regimes beginning and ending in the indicated years. As in table B1, Dp

0 and Dp
1 are analogous to D0 and D1 in table 2

but use the placebo cutoffs indicated at the top of the columns. All regressions are local linear RD regressions with triangular
kernels, using leewayκ as the running variable. Bandwidths, robust p-values, and confidence intervals are calculated using the
rdms command in Stata (Cattaneo, Titiunik, and Vazquez-Bare, 2020), although bandwidths and confidence intervals are
suppressed in this table. Bandwidths are chosen to minimize mean squared error on either side of each cutoff.
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Table C3: Effects of distance from category thresholds on Salmonella test outcomes, 2015–17

Rolling windows, 2015 to 2016 Disclosure hiatus, 2016 to 2017
(1) (2) (3) (4)

Panel A
Distance from Category 1 threshold (soonest-ending window) 0.258 0.200 0.261 −0.121

(0.08) (0.08) (0.11) (0.15)
Share of samples positive, soonest-ending window −2.942 −14.065

(1.02) (6.50)
Observations 7787 7604 1863 1863
Elasticity 1.12 0.92 0.72 −0.34

Panel B
Distance from Category 2 threshold (soonest-ending window) 0.368 0.303 0.660 0.416

(0.07) (0.06) (0.13) (0.17)
Share of samples positive, soonest-ending window −2.581 −8.067

(0.48) (5.30)
Observations 7117 6934 971 971
Elasticity 3.84 3.36 0.88 0.55

Notes: This table represents the results of similar regressions to those shown in table 3, for the 2015–16 policy period during
which sample sets were replaced with overlapping sampling windows, and the 2016–17 hiatus in public disclosure. Panel A
demonstrates the effects of distance from the Category 1 threshold (leeway2) on Salmonella test outcomes; Panel B the effects
of distance from the Category 2 threshold (leeway5). The main variables of interest are leeway2 and leeway5 for the
soonest-ending window, but the even-numbered columns also control for the share of samples positive in the soonest-ending
window. All regressions use establishment–month–year fixed effects. Standard errors, clustered by establishment, are given in
parentheses. Elasticities reported are the elasticities of the share of samples positive with respect to leewayκ, calculated using
the mean share of samples positive and the mean value of leewayκ. Observations are included only if leewayκ ∈ [0, 1).
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Table C4: Effects of policy changes on average Salmonella test outcomes

Policy introduced Rolling windows Disclosure hiatus
Date of implementation (c) 5/6/2015 11/20/2016

(1) (2)

Panel A: All establishments included
t ≥ c −0.015 0.005
Robust p-value 0.388 0.819
95% CI (lower limit) −0.05 −0.03

(upper limit) 0.02 0.04
Observations 11935 5734
Left bandwidth 392 98
Right bandwidth 165 128

Panel B: Establishments that ever exited excluded
t ≥ c −0.015 0.005
Robust p-value 0.393 0.803
95% CI (lower limit) −0.05 −0.03

(upper limit) 0.02 0.04
Observations 13650 5795
Left bandwidth 512 99
Right bandwidth 167 129

Notes: This table reports the results of RD in time regressions that use the dates of policy
implementation as the cutoffs (c). See additional notes to table 4.
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Table C5: Effects of policy changes on average Salmonella test outcomes: Robustness tests

Policy introduced Rolling windows Disclosure hiatus
Date of implementation (c) 5/6/2015 11/20/2016

(1) (2)

Panel A: Observations collapsed by sample collection date
t ≥ c −0.026 0.145
Robust p-value 0.066 0.115
95% CI (lower limit) −0.06 −0.04

(upper limit) 0.00 0.38
Observations 444 144
Left bandwidth 390 81
Right bandwidth 183 98

Panel B: “Donut” approach: Drop all observations within 7 days of policy changes
t ≥ c −0.024 0.006
Robust p-value 0.143 0.874
95% CI (lower limit) −0.06 −0.04

(upper limit) 0.01 0.05
Observations 14017 4631
Left bandwidth 513 83
Right bandwidth 186 108

Panel C: Drop all observations belonging to sample sets that span policy periods
t ≥ c −0.012 0.005
Robust p-value 0.475 0.785
95% CI (lower limit) −0.04 −0.03

(upper limit) 0.02 0.04
Observations 13245 5790
Left bandwidth 496 98
Right bandwidth 170 130

Notes: For additional details on the regression specifications, see notes to table 4.
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Table C6: Effects of policy changes on average Salmonella test outcomes: Placebo cutoff dates

Rolling windows Disclosure hiatus
(1) (2)

Panel A: Cutoffs c = Federal Register announcement dates
t ≥ c −0.015
Robust p-value 0.813
95% CI (lower limit) −0.05

(upper limit) 0.04
Observations 12262
Left bandwidth 502
Right bandwidth 99

Panel B: Cutoffs c = 120 days before policy changes
t ≥ c −0.013 0.016
Robust p-value 0.894 0.435
95% CI (lower limit) −0.05 −0.02

(upper limit) 0.04 0.05
Observations 9699 5456
Left bandwidth 357 72
Right bandwidth 119 150

Panel C: Cutoffs c = 240 days before policy changes
t ≥ c −0.020 −0.007
Robust p-value 0.069 0.573
95% CI (lower limit) −0.07 −0.03

(upper limit) 0.00 0.02
Observations 8811 4492
Left bandwidth 295 72
Right bandwidth 83 122

Panel D: Cutoffs c = 360 days before policy changes
t ≥ c −0.006 0.004
Robust p-value 0.547 0.589
95% CI (lower limit) −0.03 −0.03

(upper limit) 0.02 0.04
Observations 8271 3253
Left bandwidth 232 46
Right bandwidth 115 102

Panel E: Cutoffs c = 480 days before policy changes
t ≥ c −0.008 −0.012
Robust p-value 0.726 0.157
95% CI (lower limit) −0.04 −0.04

(upper limit) 0.03 0.01
Observations 12195 5227
Left bandwidth 316 84
Right bandwidth 161 164

Notes: Panel A does not include column (2) because the hiatus in disclosure was not preceded by a
Federal Register announcement. For additional details on the regression specifications, see notes to
table 4.


